login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = the number of Dyck paths of semilength n with k UDUU's, 0 <= k <= floor((n-1)/2).
3

%I #32 Apr 11 2024 10:50:04

%S 1,1,2,4,1,9,5,22,19,1,57,66,9,154,221,53,1,429,729,258,14,1223,2391,

%T 1131,116,1,3550,7829,4652,745,20,10455,25638,18357,4115,220,1,31160,

%U 84033,70404,20598,1790,27,93802,275765,264563,96286,12104,379,1,284789

%N Triangle read by rows: T(n,k) = the number of Dyck paths of semilength n with k UDUU's, 0 <= k <= floor((n-1)/2).

%C T(n,k) also gives the number of Dyck paths of semilength n with k UUDU's.

%C Column k=0 gives A105633(n-1) for n > 0.

%H Alois P. Heinz, <a href="/A116424/b116424.txt">Rows n = 0..200, flattened</a>

%H Jean-Luc Baril, Pamela E. Harris, Kimberly J. Harry, Matt McClinton, and José L. Ramírez, <a href="https://arxiv.org/abs/2404.05672">Enumerating runs, valleys, and peaks in Catalan words</a>, arXiv:2404.05672 [math.CO], 2024. See p. 18.

%H Toufik Mansour, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Mansour/mansour86.html">Statistics on Dyck Paths</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.5.

%H A. Sapounakis, I. Tasoulas and P. Tsikouras, <a href="http://dx.doi.org/10.1016/j.disc.2007.03.005">Counting strings in Dyck paths</a>, Discrete Math., 307 (2007), 2909-2924.

%F T(n,k) = Sum_{i=k..floor((n-1)/2)} (-1)^(i+k) * binomial(i,k) * binomial(n-i,i) * binomial(2*n-3*i, n - 2*i -1)/(n-i), n >= 1.

%F G.f. G = G(t,z) satisfies G = 1 + z^2(1-t)G + z(1-z+tz)G^2.

%e Triangle begins:

%e 00 : 1;

%e 01 : 1;

%e 02 : 2;

%e 03 : 4, 1;

%e 04 : 9, 5;

%e 05 : 22, 19, 1;

%e 06 : 57, 66, 9;

%e 07 : 154, 221, 53, 1;

%e 08 : 429, 729, 258, 14;

%e 09 : 1223, 2391, 1131, 116, 1;

%e 10 : 3550, 7829, 4652, 745, 20;

%e ...

%e T(4,1) = 5 because there exist five Dyck paths of semilength 4 with one occurrence of UDUU : UDUUUDDD, UDUUDUDD, UDUUDDUD, UUDUUDDD, UDUDUUDD.

%p b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,

%p `if`(x=0, 1, expand(b(x-1, y+1, [2, 2, 4, 2][t])*

%p `if`(t=4, z, 1) +b(x-1, y-1, [1, 3, 1, 3][t]))))

%p end:

%p T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):

%p seq(T(n), n=0..15); # _Alois P. Heinz_, Jun 02 2014

%t s = Series[((1 + (t - 1) z^2) - Sqrt[(1 + (t - 1) z^2)^2 - 4*z*(1 - z + z*t)])/(2*z*(1 - z + z*t)), {z, 0, 15}] // CoefficientList[#, z]&;

%t CoefficientList[#, t]& /@ s // Flatten (* updated by _Jean-François Alcover_, Feb 14 2021 *)

%Y Cf. A105633, A243752.

%K nonn,tabf

%O 0,3

%A I. Tasoulas (jtas(AT)unipi.gr), Feb 15 2006