login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260655
a(n) = 4*36^n*Gamma(n+3/2)/(sqrt(Pi)*(n+2)!).
1
1, 18, 405, 10206, 275562, 7794468, 227988189, 6839645670, 209293157502, 6507114533244, 204974107797186, 6527636971387308, 209816902651734900, 6798067645916210760, 221786956948016376045, 7279830704529008107830, 240234413249457267558390, 7965667386692530450620300
OFFSET
0,2
COMMENTS
a(n) is the n-th Hausdorff moment of the semiellipse on (0,36) in the form (1/162)*sqrt(x)*sqrt(36-x)/Pi. This is a rescaled variant of Wigner's semicircle distribution.
LINKS
FORMULA
G.f.: (1/162)*(1-18*z-sqrt(1-36*z))/z^2.
E.g.f. (in Maple notation): (1/(9*z))*BesselI(1,18*z)*exp(18*z).
a(n) = 2*9^n*C(2*n+2,n)/(2*n+2) = 9^n * A000108(n+1). - Robert Israel, Nov 13 2015
MAPLE
seq(2*9^n*binomial(2*n+2, n)/(2*n+2), n = 0 .. 50); # Robert Israel, Nov 13 2015
MATHEMATICA
Table[4*36^n Gamma[n + 3/2]/(Sqrt[Pi] (n + 2)!), {n, 0, 17}] (* or *) Table[2*9^n Binomial[2 n + 2, n]/(2 n + 2), {n, 0, 17}] (* Michael De Vlieger, Nov 18 2015 *)
PROG
(PARI) z='z+O('z^33); Vec((1/162)*(1-18*z-sqrt(1-36*z))/z^2) \\ Altug Alkan, Nov 13 2015
CROSSREFS
Sequence in context: A111454 A116421 A298465 * A318598 A215229 A172135
KEYWORD
nonn
AUTHOR
Karol A. Penson, Nov 13 2015
STATUS
approved