Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Nov 18 2015 11:48:12
%S 1,18,405,10206,275562,7794468,227988189,6839645670,209293157502,
%T 6507114533244,204974107797186,6527636971387308,209816902651734900,
%U 6798067645916210760,221786956948016376045,7279830704529008107830,240234413249457267558390,7965667386692530450620300
%N a(n) = 4*36^n*Gamma(n+3/2)/(sqrt(Pi)*(n+2)!).
%C a(n) is the n-th Hausdorff moment of the semiellipse on (0,36) in the form (1/162)*sqrt(x)*sqrt(36-x)/Pi. This is a rescaled variant of Wigner's semicircle distribution.
%H Robert Israel, <a href="/A260655/b260655.txt">Table of n, a(n) for n = 0..638</a>
%F G.f.: (1/162)*(1-18*z-sqrt(1-36*z))/z^2.
%F E.g.f. (in Maple notation): (1/(9*z))*BesselI(1,18*z)*exp(18*z).
%F a(n) = 2*9^n*C(2*n+2,n)/(2*n+2) = 9^n * A000108(n+1). - _Robert Israel_, Nov 13 2015
%p seq(2*9^n*binomial(2*n+2,n)/(2*n+2), n = 0 .. 50); # _Robert Israel_, Nov 13 2015
%t Table[4*36^n Gamma[n + 3/2]/(Sqrt[Pi] (n + 2)!), {n, 0, 17}] (* or *) Table[2*9^n Binomial[2 n + 2, n]/(2 n + 2), {n, 0, 17}] (* _Michael De Vlieger_, Nov 18 2015 *)
%o (PARI) z='z+O('z^33); Vec((1/162)*(1-18*z-sqrt(1-36*z))/z^2) \\ _Altug Alkan_, Nov 13 2015
%K nonn
%O 0,2
%A _Karol A. Penson_, Nov 13 2015