login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A022011 Initial members of prime octuplets (p, p+2, p+6, p+8, p+12, p+18, p+20, p+26). 32
11, 15760091, 25658441, 93625991, 182403491, 226449521, 661972301, 910935911, 1042090781, 1071322781, 1170221861, 1394025161, 1459270271, 1712750771, 1742638811, 1935587651, 2048038451, 2397437501, 2799645461 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

All terms are congruent to 11 (modulo 210). - Matt C. Anderson, May 26 2015

REFERENCES

Martin Gardner, The Last Recreations (Springer-Verlag 1997) at 197.

LINKS

Matt C. Anderson and Dana Jacobsen, Table of n, a(n) for n = 1..10000 [first 1000 terms from Matt C. Anderson]

T. Forbes, Prime k-tuplets

MATHEMATICA

Select[Prime[Range[2 10^9]], Union[PrimeQ[# + {2, 6, 8, 12, 18, 20, 26}]] == {True} &] (* Vincenzo Librandi, Oct 01 2015 *)

PROG

(Perl) use ntheory ":all"; say for sieve_prime_cluster(1, 1e10, 2, 6, 8, 12, 18, 20, 26); # Dana Jacobsen, Sep 30 2015

(MAGMA) [p: p in PrimesUpTo(4*10^8) | forall{p+r: r in [2, 6, 8, 12, 18, 20, 26] | IsPrime(p+r)}]; // Vincenzo Librandi, Oct 01 2015

(PARI) forprime(p=2, 10^30, if (isprime(p+2) && isprime(p+6) && isprime(p+8) && isprime(p+12) && isprime(p+18) && isprime(p+20) && isprime(p+26), print1(p", "))) \\ Altug Alkan, Oct 01 2015

CROSSREFS

A065706 is the union of A022011, A022012 and A022013.

Sequence in context: A083443 A174089 A162861 * A175889 A295173 A022545

Adjacent sequences:  A022008 A022009 A022010 * A022012 A022013 A022014

KEYWORD

nonn

AUTHOR

Warut Roonguthai

EXTENSIONS

Reference provided by Harvey P. Dale, May 10 2013

More terms from Matt C. Anderson, Dec 06 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 10:25 EST 2020. Contains 331144 sequences. (Running on oeis4.)