The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022010 Initial members of prime septuplets (p, p+2, p+8, p+12, p+14, p+18, p+20). 37
 5639, 88799, 284729, 626609, 855719, 1146779, 6560999, 7540439, 8573429, 17843459, 19089599, 24001709, 42981929, 43534019, 69156539, 74266259, 79208399, 80427029, 84104549, 87988709, 124066079, 128469149, 144214319, 157131419, 208729049, 218033729 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS All terms are congruent to 179 (modulo 210). - Matt C. Anderson, May 26 2015 LINKS Dana Jacobsen, Table of n, a(n) for n = 1..10000 (first 1000 terms from Matt C. Anderson) Tony Forbes and Norman Luhn, Patterns of prime k-tuplets & the Hardy-Littlewood constants. Norman Luhn, 1 million terms (zipped archive). Hugo Pfoertner, Illustration of n/Integral_{x=2,a(n)} 1/log(x)^7 dx approaching Hardy-Littlewood bound. (2020). FORMULA a(n) = 210*A357889(n) + 179. - Hugo Pfoertner, Nov 18 2022 EXAMPLE a(100) = 2526962939, a(1000) = 80752495919, a(10000) = 2010407120789, a(100000) = 42609827234069, a(1000000) = 822249634821059. See illustration for asymptotic behavior. - Hugo Pfoertner, Jun 15 2020 MATHEMATICA Select[Prime[Range[2 10^8]], Union[PrimeQ[# + {2, 8, 12, 14, 18, 20}]] == {True} &] (* Vincenzo Librandi, Oct 01 2015 *) Select[Partition[Prime[Range[12021000]], 7, 1], Differences[#]=={2, 6, 4, 2, 4, 2}&][[All, 1]] (* or *) Select[Range[179, 219*10^6, 210], AllTrue[ #+{0, 2, 8, 12, 14, 18, 20}, PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 04 2019 *) PROG (Perl) use ntheory ":all"; say for sieve_prime_cluster(1, 1e9, 2, 8, 12, 14, 18, 20); # Dana Jacobsen, Sep 30 2015 (Magma) [p: p in PrimesUpTo(3*10^8) | forall{p+r: r in [2, 8, 12, 14, 18, 20] | IsPrime(p+r)}]; // Vincenzo Librandi, Oct 01 2015 (PARI) forprime(p=2, 10^30, if (isprime(p+2) && isprime(p+8) && isprime(p+12) && isprime(p+14) && isprime(p+18) && isprime(p+20), print1(p", "))) \\ Altug Alkan, Oct 01 2015. [This can be made 2x faster by inserting "p%210==179 &&" before or after "if(". - M. F. Hasler, Aug 04 2021] CROSSREFS Cf. A022009 (prime septuplets of the first type), A332493. Cf. A257124 (union of this and A022009), A343637 (septuplet following 10^n). Cf. A357889. Sequence in context: A045128 A229591 A161193 * A201252 A247402 A339961 Adjacent sequences: A022007 A022008 A022009 * A022011 A022012 A022013 KEYWORD nonn AUTHOR Warut Roonguthai EXTENSIONS More terms from a Maple program by Matt C. Anderson, Dec 05 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 15:57 EDT 2024. Contains 373463 sequences. (Running on oeis4.)