login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of (63/25) * (17+15*sqrt(5)) / (7+15*sqrt(5)): an approximation for Pi from Srinivasa Ramanujan.
0

%I #32 Aug 21 2023 12:19:02

%S 3,1,4,1,5,9,2,6,5,3,8,0,5,6,8,8,2,0,1,8,9,8,3,9,0,0,0,6,3,0,1,5,0,7,

%T 8,2,2,4,8,7,5,0,3,4,7,5,7,7,4,3,0,9,2,2,2,8,3,8,6,6,0,9,2,8,2,2,0,4,

%U 2,4,6,3,7,4,4,5,2,5,1,1,6,3,5,4,8,9,2,9,9,6

%N Decimal expansion of (63/25) * (17+15*sqrt(5)) / (7+15*sqrt(5)): an approximation for Pi from Srinivasa Ramanujan.

%C This formula that derives from Ramanujan modular equations is correct to 9 places exactly (see Ramanujan link, page 43).

%C Pi = 3.1415926535... and this approximation = 3.1415926538...

%C A quadratic number with minimal polynomial 168125x^2 - 792225x + 829521 and denominator 6725. - _Charles R Greathouse IV_, Oct 02 2022

%D Jörg Arndt and Christoph Haenel, Pi Unleashed, Springer-Verlag, 2006, retrieved Jun 05 2013, (4.17) page 57.

%D David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Revised Edition), Penguin Books, 1997, entry 3.14159 (Pi), page 36.

%H S. Ramanujan, <a href="http://ramanujan.sirinudi.org/Volumes/published/ram06.pdf">Modular equations and approximations to Pi</a>, Quarterly Journal of Mathematics, XLV, 1914, p. 43.

%H <a href="/index/Al#algebraic_02">Index entries for algebraic numbers, degree 2</a>

%F Equals (63/13450) * (503+75*sqrt(5)).

%F Equals the root of 829521 - 792225*x + 168125*x^2 which is > 3. - _Peter Luschny_, Nov 29 2020

%e 3.141592653805688201898390006301507822487503475774...

%p evalf((63/25)*(17+15*sqrt(5))/(7+15*sqrt(5)),100);

%t RealDigits[(63/25)*(17 + 15*Sqrt[5])/(7 + 15*Sqrt[5]), 10, 100][[1]] (* _Amiram Eldar_, Nov 29 2020 *)

%o (PARI) (63/13450) * (503+75*sqrt(5)) \\ _Michel Marcus_, Nov 29 2020

%Y Other approximations to Pi: A068028, A068079, A068089, A328927.

%K nonn,cons

%O 1,1

%A _Bernard Schott_, Nov 29 2020