login
A029841
McKay-Thompson series of class 8E for the Monster group.
15
1, 4, 2, -8, -1, 20, -2, -40, 3, 72, 2, -128, -4, 220, -4, -360, 5, 576, 8, -904, -8, 1384, -10, -2088, 11, 3108, 12, -4552, -15, 6592, -18, -9448, 22, 13392, 26, -18816, -29, 26216, -34, -36224, 38, 49700, 42, -67728, -51, 91688
OFFSET
0,2
COMMENTS
A Hauptmodul for Gamma'_0(8).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
A. Cayley, An Elementary Treatise on Elliptic Functions, 2nd ed, 1895, p. 380, Section 488.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339. See page 336.
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
J. McKay and A. Sebbar, Fuchsian groups, automorphic functions and Schwarzians, Math. Ann., 318 (2000), 255-275.
J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
G.f.: ( Product_{k>0} (1 + q^(2*k - 1)) / (1 + q^(2*k)) )^4.
Expansion of q^(1/4) * (1 + k) / k^(1/2) in powers of q^(1/2) where q is Jacobi's nome and k is the elliptic modulus. - Michael Somos, Aug 01 2011
Expansion of q^(1/2) * 4 / k in powers of q where q is Jacobi's nome and k is the elliptic modulus. - Michael Somos, Aug 01 2011 and Feb 28 2012
Expansion of (phi(x) / psi(x))^4 in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of q^(1/2) * (eta(q^2)^3 / (eta(q) * eta(q^4)^2))^4 in powers of q. - Michael Somos, Aug 01 2011
Euler transform of period 4 sequence [4, -8, 4, 0, ...]. - Michael Somos, Mar 18 2004
Given g.f. A(x), then B(q) = A(q^2) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = 16 + 8*v + v^2 - u^2*v. - Michael Somos, Mar 18 2004
G.f. A(q) satisfies A(q) = sqrt(A(q^2))+4*q/sqrt(A(q^2)). - Joerg Arndt, Aug 06 2011
A112143(n) = (-1)^n * a(n). a(2*n) = A029839(n). a(2*n + 1) = 4 * A079006(n). - Michael Somos, Mar 27 2004.
Convolution inverse of A001938. Convolution square of A029839. Convolution square is A029845.
EXAMPLE
G.f. = 1 + 4*x + 2*x^2 - 8*x^3 - x^4 + 20*x^5 - 2*x^6 - 40*x^7 + 3*x^8 + ...
T8E = 1/q + 4*q + 2*q^3 - 8*q^5 - q^7 + 20*q^9 - 2*q^11 - 40*q^13 + 3*x^15 + ...
MATHEMATICA
a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ 4 / Sqrt[m], {q, 0, n - 1/2}]]; (* Michael Somos, Aug 01 2011 *)
a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ 2 (1 + Sqrt[m]) / m^(1/4), {q, 0, n/2 - 1/4}]]; (* Michael Somos, Aug 01 2011 *)
a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2]^3 / (QPochhammer[ x] QPochhammer[x^4]^2))^4, {x, 0, n}]; (* Michael Somos, Aug 20 2014 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 / (eta(x + A) * eta(x^4 + A))^2)^4, n))};
(PARI) {a(n) = my(A, m); if( n<0, 0, A = 1 + O(x); m=1; while( m<=n, m*=2; A = subst(A, x, x^2); A = (4*x + A) / sqrt(A)); polcoeff(A, n))};
CROSSREFS
KEYWORD
sign,easy,nice
STATUS
approved