login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112151
McKay-Thompson series of class 16b for the Monster group.
2
1, 4, -2, 8, -1, 20, 2, 40, 3, 72, -2, 128, -4, 220, 4, 360, 5, 576, -8, 904, -8, 1384, 10, 2088, 11, 3108, -12, 4552, -15, 6592, 18, 9448, 22, 13392, -26, 18816, -29, 26216, 34, 36224, 38, 49700, -42, 67728, -51, 91688, 56, 123392, 66, 165128, -78, 219784, -85, 291072
OFFSET
0,2
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of A + 4*q/A, where A = q^(1/2)*(eta(q^2)/eta(q^8))^2, in powers of q. - G. C. Greubel, Jun 16 2018
EXAMPLE
T16b = 1/q +4*q -2*q^3 +8*q^5 -q^7 +20*q^9 +2*q^11 +40*q^13 +...
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; e16d := q^(1/4)*(eta[q]/eta[q^4])^2;
a[n_]:= SeriesCoefficient[(e16d /. {q -> q^2}) + 4*q/(e16d /. {q -> q^2}), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Feb 13 2018 *)
PROG
(PARI) q='q+O('q^50); A = (eta(q^2)/eta(q^8))^2; Vec(A + 4*q/A) \\ G. C. Greubel, Jun 16 2018
CROSSREFS
Sequence in context: A241005 A029841 A112143 * A112152 A211883 A083489
KEYWORD
sign
AUTHOR
Michael Somos, Aug 28 2005
STATUS
approved