login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241005
Decimal expansion of gamma', the analog of Euler's constant when 1/x is replaced by 1/(x*log(x)).
1
4, 2, 8, 1, 6, 5, 7, 2, 4, 8, 7, 1, 2, 3, 5, 0, 7, 5, 1, 9, 1, 4, 5, 8, 8, 0, 3, 8, 3, 2, 4, 8, 0, 0, 4, 4, 6, 1, 0, 7, 3, 6, 1, 4, 3, 0, 4, 5, 6, 9, 9, 7, 0, 5, 8, 4, 7, 8, 3, 4, 3, 8, 1, 3, 4, 4, 2, 5, 6, 2, 4, 3, 6, 4, 1, 3, 3, 4, 8, 2, 8, 1, 4, 7, 1, 5, 8, 9, 5, 4, 7, 7, 0, 6, 3, 5, 5, 6, 3
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.5.3 Generalized Euler Constants, p. 32.
LINKS
Harold G. Diamond, A number theoretic series of I. Kasara, Pacific J. Math., Volume 111, Number 2 (1984), 283-285.
Eric Weisstein's MathWorld, Euler-Mascheroni Constant
FORMULA
lim_{m -> infinity} ( Sum_{n=2..m} 1/(n*log(n)) - log(log(m)/log(2)) ).
EXAMPLE
0.4281657248712350751914588...
MATHEMATICA
digits = 99; m0 = 10^digits; dm = 10^digits; Clear[g]; g[m_] := g[m] = NSum[1/(n*Log[n]) - (2*n*Log[Log[m]/Log[2]])/(-2 + m + m^2), {n, 2, m}, WorkingPrecision -> 2 digits, NSumTerms -> 1000, Method -> {"EulerMaclaurin", Method -> {"NIntegrate", "MaxRecursion" -> 30}}]; g[m = m0]; g[m = m0 + dm]; While[Print["m = ", m // N // ScientificForm, " ", RealDigits[g[m], 10, digits]]; RealDigits[g[m], 10, digits + 2] != RealDigits[g[m - dm], 10, digits + 2], m = m + dm]; RealDigits[g[m], 10, digits] // First (* updated Apr 19 2016 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
EXTENSIONS
Extended to 99 digits by Jean-François Alcover, Apr 19 2016
STATUS
approved