OFFSET
0,1
COMMENTS
Sometimes called Ioachimescu's constant, after the Romanian mathematician and engineer Andrei Gheorghe Ioachimescu (1868-1943). - Amiram Eldar, Apr 02 2022
REFERENCES
Vasile Berinde and Eugen Păltănea, Gazeta Matematică - A Bridge Over Three Centuries, Romanian Mathematical Society, 2004, pp. 113-114.
Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.5.3, p. 32.
A. G. Ioachimescu, Problem 16, Gazeta Matematică, Vol. 1, No. 2 (1895), p. 39.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000
Chao-Ping Chen, Ioachimescu's constant, Research Group in Mathematical Inequalities and Applications, Vol. 13. No. 1 (2010).
Alina Sîntămărian, A Generalisation of Ioachimescu's Constant, The Mathematical Gazette, Vol. 93, No. 528 (2009), pp. 456-467.
Alina Sîntămărian, Regarding a generalisation of Ioachimescu's constant, The Mathematical Gazette, Vol. 94, No. 530 (2010), pp. 270-283.
Alina Sîntămărian, Sequences that converge quickly to a generalized Euler constant, Mathematical and Computer Modelling, Vol. 53, No. 5-6 (2011), pp. 624-630.
Xu You, Di-Rong Chen, and Hong Shi, Some new sequences that converge to the Ioachimescu constant, Journal of Inequalities and Applications, Vol. 2016, No. 1 (2016), Article 148.
FORMULA
Equals zeta(1/2) + 2.
EXAMPLE
0.53964549119041318711050084748470198753277...
MATHEMATICA
RealDigits[Zeta[1/2] + 2, 10, 100] // First
PROG
(PARI) default(realprecision, 100); zeta(1/2)+2 \\ G. C. Greubel, Sep 04 2018
(Magma) SetDefaultRealField(RealField(100)); L:=RiemannZeta(); 2 + Evaluate(L, 1/2) // G. C. Greubel, Sep 04 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Jean-François Alcover, May 19 2014
STATUS
approved