login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242618
Number T(n,k) of partitions of n, where k is the difference between the number of odd parts and the number of even parts, both counted without multiplicity; triangle T(n,k), n>=0, read by rows.
28
1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 1, 4, 2, 1, 1, 2, 3, 3, 2, 1, 8, 3, 3, 2, 4, 6, 5, 5, 4, 13, 8, 4, 1, 5, 5, 11, 13, 7, 1, 11, 20, 14, 9, 2, 1, 6, 13, 17, 26, 11, 3, 1, 22, 31, 27, 15, 5, 2, 12, 18, 34, 44, 18, 7, 4, 40, 47, 51, 23, 11, 5, 16, 36, 56, 72, 34, 11, 1
OFFSET
0,7
COMMENTS
T(n,0) = A241638(n).
Sum_{k<0} T(n,k) = A241640(n).
Sum_{k<=0} T(n,k) = A241639(n).
Sum_{k>=0} T(n,k) = A241637(n).
Sum_{k>0} T(n,k) = A241636(n).
T(n^2,n) = T(n^2+n,-n) = 1.
T(n^2+n,n) = Sum_{k} T(n,k) = A000041(n).
T(n^2+3*n,-n) = A000712(n).
LINKS
EXAMPLE
Triangle T(n,k) begins:
: n\k : -3 -2 -1 0 1 2 3 ...
+-----+---------------------------
: 0 : 1;
: 1 : 1;
: 2 : 1, 0, 1;
: 3 : 1, 2;
: 4 : 2, 1, 1, 1;
: 5 : 4, 2, 1;
: 6 : 1, 2, 3, 3, 2;
: 7 : 1, 8, 3, 3;
: 8 : 2, 4, 6, 5, 5;
: 9 : 4, 13, 8, 4, 1;
: 10 : 5, 5, 11, 13, 7, 1;
: 11 : 11, 20, 14, 9, 2;
: 12 : 1, 6, 13, 17, 26, 11, 3;
: 13 : 1, 22, 31, 27, 15, 5;
: 14 : 2, 12, 18, 34, 44, 18, 7;
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
expand(b(n, i-1)+add(b(n-i*j, i-1)*x^(2*irem(i, 2)-1), j=1..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=ldegree(p)..degree(p)))(b(n$2)):
seq(T(n), n=0..20);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Expand[b[n, i - 1] + Sum[b[n - i*j, i - 1]*x^(2*Mod[i, 2] - 1), {j, 1, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, Exponent[p, x, Min], Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Dec 12 2016 after Alois P. Heinz *)
CROSSREFS
Row sums give A000041.
Cf. A240009 (parts counted with multiplicity), A240021 (distinct parts), A242626 (compositions counted without multiplicity).
Sequence in context: A104320 A350818 A340142 * A180264 A225200 A128706
KEYWORD
nonn,tabf,look
AUTHOR
Alois P. Heinz, May 19 2014
STATUS
approved