login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242613
Decimal expansion of the sum of the alternating series tau(5), with tau(n) = Sum_{k>0} (-1)^k*log(k)^n/k.
3
0, 2, 4, 5, 1, 4, 9, 0, 7, 6, 5, 6, 4, 0, 9, 7, 8, 2, 9, 0, 7, 4, 2, 2, 8, 0, 0, 6, 8, 6, 1, 3, 7, 1, 1, 0, 2, 8, 7, 5, 7, 0, 7, 0, 9, 2, 3, 7, 9, 1, 5, 0, 3, 7, 4, 2, 9, 0, 5, 1, 1, 2, 7, 2, 9, 8, 3, 7, 8, 8, 0, 0, 9, 9, 7, 5, 5, 3, 3, 5, 8, 9, 1, 5, 4, 6, 6, 2, 9, 4, 6, 0, 6, 2, 9, 3, 7, 4, 1, 7, 8
OFFSET
0,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, chapter 2.21, p. 168.
LINKS
FORMULA
tau(n) = -log(2)^(n+1)/(n+1) + Sum_(k=0..n-1) (binomial(n, k)*log(2)^(n-k)*gamma(k)).
tau(5) = gamma*log(2)^5 - (1/6)*log(2)^6 + 5*log(2)^4*gamma(1) + 10*log(2)^3*gamma(2) + 10*log(2)^2*gamma(3) + 5*log(2)*gamma(4).
EXAMPLE
-0.02451490765640978290742280068613711...
MATHEMATICA
tau[n_] := -Log[2]^(n+1)/(n+1) + Sum[Binomial[n, k]*Log[2]^(n-k)*StieltjesGamma[k], {k, 0, n-1}]; Join[{0}, RealDigits[tau[5], 10, 100] // First]
KEYWORD
nonn,cons
AUTHOR
STATUS
approved