login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the sum of the alternating series tau(5), with tau(n) = Sum_{k>0} (-1)^k*log(k)^n/k.
3

%I #19 Aug 30 2018 22:13:46

%S 0,2,4,5,1,4,9,0,7,6,5,6,4,0,9,7,8,2,9,0,7,4,2,2,8,0,0,6,8,6,1,3,7,1,

%T 1,0,2,8,7,5,7,0,7,0,9,2,3,7,9,1,5,0,3,7,4,2,9,0,5,1,1,2,7,2,9,8,3,7,

%U 8,8,0,0,9,9,7,5,5,3,3,5,8,9,1,5,4,6,6,2,9,4,6,0,6,2,9,3,7,4,1,7,8

%N Decimal expansion of the sum of the alternating series tau(5), with tau(n) = Sum_{k>0} (-1)^k*log(k)^n/k.

%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, chapter 2.21, p. 168.

%H G. C. Greubel, <a href="/A242613/b242613.txt">Table of n, a(n) for n = 0..10000</a>

%F tau(n) = -log(2)^(n+1)/(n+1) + Sum_(k=0..n-1) (binomial(n, k)*log(2)^(n-k)*gamma(k)).

%F tau(5) = gamma*log(2)^5 - (1/6)*log(2)^6 + 5*log(2)^4*gamma(1) + 10*log(2)^3*gamma(2) + 10*log(2)^2*gamma(3) + 5*log(2)*gamma(4).

%e -0.02451490765640978290742280068613711...

%t tau[n_] := -Log[2]^(n+1)/(n+1) + Sum[Binomial[n, k]*Log[2]^(n-k)*StieltjesGamma[k], {k, 0, n-1}]; Join[{0}, RealDigits[tau[5], 10, 100] // First]

%Y Cf. A001620, A082633, A086279, A086280, A086281, A242494, A242611, A242612.

%K nonn,cons

%O 0,2

%A _Jean-François Alcover_, May 19 2014