Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Jan 17 2020 05:27:46
%S 4,2,8,1,6,5,7,2,4,8,7,1,2,3,5,0,7,5,1,9,1,4,5,8,8,0,3,8,3,2,4,8,0,0,
%T 4,4,6,1,0,7,3,6,1,4,3,0,4,5,6,9,9,7,0,5,8,4,7,8,3,4,3,8,1,3,4,4,2,5,
%U 6,2,4,3,6,4,1,3,3,4,8,2,8,1,4,7,1,5,8,9,5,4,7,7,0,6,3,5,5,6,3
%N Decimal expansion of gamma', the analog of Euler's constant when 1/x is replaced by 1/(x*log(x)).
%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.5.3 Generalized Euler Constants, p. 32.
%H Harold G. Diamond, <a href="http://projecteuclid.org/euclid.pjm/1102710570">A number theoretic series of I. Kasara</a>, Pacific J. Math., Volume 111, Number 2 (1984), 283-285.
%H Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, p. 5.
%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/Euler-MascheroniConstant.html">Euler-Mascheroni Constant</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant">Euler-Mascheroni constant</a>
%F lim_{m -> infinity} ( Sum_{n=2..m} 1/(n*log(n)) - log(log(m)/log(2)) ).
%e 0.4281657248712350751914588...
%t digits = 99; m0 = 10^digits; dm = 10^digits; Clear[g]; g[m_] := g[m] = NSum[1/(n*Log[n]) - (2*n*Log[Log[m]/Log[2]])/(-2 + m + m^2), {n, 2, m}, WorkingPrecision -> 2 digits, NSumTerms -> 1000, Method -> {"EulerMaclaurin", Method -> {"NIntegrate", "MaxRecursion" -> 30}}]; g[m = m0]; g[m = m0 + dm]; While[Print["m = ", m // N // ScientificForm, " ", RealDigits[g[m], 10, digits]]; RealDigits[g[m], 10, digits + 2] != RealDigits[g[m - dm], 10, digits + 2], m = m + dm]; RealDigits[g[m], 10, digits] // First (* updated Apr 19 2016 *)
%Y Cf. A001620, A082633, A242616.
%K nonn,cons
%O 0,1
%A _Jean-François Alcover_, Aug 07 2014
%E Extended to 99 digits by _Jean-François Alcover_, Apr 19 2016