login
A138243
Triangle read by rows: Row products give A027642.
3
1, 2, 1, 2, 3, 1, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 7, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
0,2
COMMENTS
Except for the first column, the n-th prime number appears in every A006093(n)-th row, beginning at the A000040(n)-th row, in the n-th column.
FORMULA
T(n,k) = A000040(k) if A027642(n) mod A000040(k) = 0, 1 otherwise.
EXAMPLE
Row products of the first few rows are:
1 = 1
2*1 = 2
2*3*1 = 6
1*1*1*1 = 1
2*3*5*1*1 = 30
1*1*1*1*1*1 = 1
2*3*1*7*1*1*1 = 42
1*1*1*1*1*1*1*1 = 1
2*3*5*1*1*1*1*1*1 = 30
MAPLE
T:= (n, k)-> (p-> `if`(irem(denom(bernoulli(n)), p)=0, p, 1))(ithprime(k)):
seq(seq(T(n, k), k=1..n+1), n=0..20); # Alois P. Heinz, Aug 27 2017
MATHEMATICA
Table[With[{p = Prime@ k}, p Boole[Divisible[Denominator@ BernoulliB[n - 1], p]]] /. 0 -> 1, {n, 14}, {k, n}] // Flatten (* Michael De Vlieger, Aug 27 2017 *)
PROG
(PARI) tabl(nn) = {for (n=0, nn, dbn = denominator(bernfrac(n)); for (k=1, n+1, if (! (dbn % prime(k)), w = prime(k), w = 1); print1(w, ", "); ); print; ); } \\ Michel Marcus, Aug 27 2017
CROSSREFS
Sequence in context: A094646 A124448 A143343 * A273136 A273137 A362947
KEYWORD
nonn,tabl
AUTHOR
Mats Granvik, Mar 08 2008
EXTENSIONS
Offset corrected by Alois P. Heinz, Aug 27 2017
STATUS
approved