OFFSET
1,1
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..5000
EXAMPLE
First two cubes of primes: between p(1)^3=8 and p(2)^3=27 there are exactly two squares of primes, 9 and 25, hence a(1)=2. Similarly, between p(2)^3=27 and p(3)^3=125, there are exactly 2 squares of primes, 49 and121, hence a(2)=2. (Typo corrected Jul 01 2008.)
{n,p(n)^3,p(n+1)^3}, (squares of primes)}, a(n)}
n=1: {8,27}, {9,25}, a(n)=2
n=2: {27,125}, {49,121}, a(n)=2
n=3: {125,343}, {169,289}, a(n)=2
n=4: {343,1331}, {361,529,841,961}, a(n)=4
n=5: {1331,2197}, {1369,1681,1849}, a(n)=3
n=6: {2197,4913}, {2209,2809,3481,3721,4489}, a(n)=5
n=7: {4913,6859}, {5041,5329,6241}, a(n)=3
n=8: {6859,12167}, {6889,7921,9409,10201,10609,11449,11881}, a(n)=7
n=9: {12167,24389}, {12769,16129,17161,18769,19321,22201,22801},a(n)=7
n=10: {24389,29791}, {24649,26569,27889}, a(n)=3.
MATHEMATICA
Table[PrimePi[Sqrt[Prime[n + 1]]^3] - PrimePi[Sqrt[Prime[n]]^3], {n, 1, 100}] (* Vincenzo Librandi, Feb 20 2018 *)
PROG
(PARI) A138241(n) = primepi(sqrt(prime(n+1)^3)) - primepi(sqrt(prime(n)^3)) \\ Michael B. Porter, Dec 18 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, May 17 2008
STATUS
approved