login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138239
Triangle read by rows: T(n,k) = A000040(k) if A002445(n) mod A000040(k) = 0, otherwise 1.
4
1, 2, 3, 2, 3, 5, 2, 3, 1, 7, 2, 3, 5, 1, 1, 2, 3, 1, 1, 11, 1, 2, 3, 5, 7, 1, 13, 1, 2, 3, 1, 1, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 17, 1, 1, 2, 3, 1, 7, 1, 1, 1, 19, 1, 1, 2, 3, 5, 1, 11, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 23, 1, 1, 1, 2, 3, 5, 7, 1, 13, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
0,2
COMMENTS
Row products give A002445.
A prime number appears in a column at every A130290-th row from the (A130290+1)-th row onwards. The prime numbers are, so to speak, equidistantly distributed in the columns. A130290 is essentially A005097. Counting terms > 1 in the rows gives A046886.
EXAMPLE
First few rows of the triangle and row products are:
1 = 1
2*3 = 6
2*3*5 = 30
2*3*1*7 = 42
2*3*5*1*1 = 30
2*3*1*1*11*1 = 66
2*3*5*7*1*13*1 = 2730
MAPLE
T:= (n, k)-> (p-> `if`(irem(denom(bernoulli(2*n)), p)=0, p, 1))(ithprime(k)):
seq(seq(T(n, k), k=1..n+1), n=0..20); # Alois P. Heinz, Aug 27 2017
MATHEMATICA
t[n_, k_] := If[Mod[Denominator[BernoulliB[2n]], (p = Prime[k])] == 0, p, 1];
Flatten[Table[t[n, k], {n, 0, 13}, {k, 1, n+1}]][[1 ;; 102]] (* Jean-François Alcover, Jun 16 2011 *)
PROG
(PARI) tabl(nn) = {for (n=0, nn, dbn = denominator(bernfrac(2*n)); for (k=1, n+1, if (! (dbn % prime(k)), w = prime(k), w = 1); print1(w, ", "); ); print; ); } \\ Michel Marcus, Aug 27 2017
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Mats Granvik, Mar 07 2008
EXTENSIONS
Definition edited by N. J. A. Sloane, Mar 18 2010
Offset corrected by Alois P. Heinz, Aug 27 2017
STATUS
approved