login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124448
Riordan array (sqrt(1+4x^2)-2x, (1+2x-sqrt(1+4x^2))/2).
2
1, -2, 1, 2, -3, 1, 0, 4, -4, 1, -2, -1, 7, -5, 1, 0, -4, -4, 11, -6, 1, 4, 2, -6, -10, 16, -7, 1, 0, 8, 8, -6, -20, 22, -8, 1, -10, -5, 11, 19, -1, -35, 29, -9, 1, 0, -20, -20, 7, 34, 13, -56, 37, -10, 1, 28, 14, -26, -46, -12, 49, 41, -84
OFFSET
0,2
COMMENTS
Inverse of triangle A106195.
Row sums are A105523 (expansion of 1-xc(-x^2) where c(x) is the g.f. of A000108).
Product of A007318 and A124448 is inverse of A053538.
A124448*A007318 = A106180, as infinite lower triangular matrices. - Philippe Deléham, Oct 16 2007
Triangle T(n,k), read by rows, given by (-2,1,-1,1,-1,1,-1,1,-1,...) DELTA (1,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 09 2011
EXAMPLE
Triangle begins
1;
-2, 1;
2, -3, 1;
0, 4, -4, 1;
-2, -1, 7, -5, 1;
0, -4, -4, 11, -6, 1;
4, 2, -6, -10, 16, -7, 1;
0, 8, 8, -6, -20, 22, -8, 1;
PROG
(PARI)
N=12;
T(n, k)=sum(i=0, n-k, binomial(k, i)*binomial(n-k, i)*2^(n-k-i));
M=matrix(N, N);
for(n=1, N, for(k=1, n, M[n, k]=T(n-1, k-1))); /* A106195 */
A=M^-1; /* A124448 */
/* for (n=1, N, for(k=1, n, print1(M[n, k], ", "))); */ /* A106195 */
for (n=1, N, for(k=1, n, print1(A[n, k], ", "))); /* A124448 */
/* Joerg Arndt, May 14 2011 */
CROSSREFS
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Nov 01 2006
EXTENSIONS
Edited by N. J. A. Sloane, Dec 29 2011
STATUS
approved