login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160012
Numerator of Hermite(n, 8/25).
1
1, 16, -994, -55904, 2833036, 324848576, -12508897784, -2636506684544, 67268748657296, 27441366823956736, -317711553211272224, -348100470150839555584, -1201073665758439809344, 5202289873610458296810496, 102754085046341979650807936, -89396007427441548519770753024
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Jul 17 2018: (Start)
a(n) = 25^n * Hermite(n, 8/25).
E.g.f.: exp(16*x - 625*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(16/25)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 16/25, -994/625, -55904/15625, 2833036/390625
MAPLE
seq(coeff(series(factorial(n)*exp(16*x-625*x^2), x, n+1), x, n), n=0..15); # Muniru A Asiru, Jul 17 2018
MATHEMATICA
Numerator[HermiteH[Range[0, 20], 8/25]] (* Harvey P. Dale, Sep 29 2013 *)
Table[25^n*HermiteH[n, 8/25], {n, 0, 30}] (* G. C. Greubel, Jul 17 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 8/25)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(16*x - 625*x^2))) \\ G. C. Greubel, Jul 17 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(16/25)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 17 2018
(GAP) List(List([0..15], n->Sum([0..Int(n/2)], k->(-1)^k*Factorial(n)*(16/25)^(n-2*k)/(Factorial(k)*Factorial(n-2*k)))), NumeratorRat); # Muniru A Asiru, Jul 17 2018
CROSSREFS
Cf. A009969 (denominators).
Sequence in context: A181199 A024301 A211090 * A070307 A159683 A197104
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved