This site is supported by donations to The OEIS Foundation.

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A009969 Powers of 25. 26
 1, 25, 625, 15625, 390625, 9765625, 244140625, 6103515625, 152587890625, 3814697265625, 95367431640625, 2384185791015625, 59604644775390625, 1490116119384765625, 37252902984619140625, 931322574615478515625, 23283064365386962890625, 582076609134674072265625, 14551915228366851806640625, 363797880709171295166015625, 9094947017729282379150390625 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A000005(a(n)) = A005408(n+1). - Reinhard Zumkeller, Mar 04 2007 The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 25-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011 LINKS T. D. Noe, Table of n, a(n) for n = 0..100 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (25). FORMULA G.f.: 1/(1-25*x). - Philippe Deléham, Nov 23 2008 E.g.f.: exp(25*x) - Zerinvary Lajos, Apr 29 2009 a(n)=25^n; a(n)=25*a(n-1) n>0 a(0)=1 [From Vincenzo Librandi, Nov 21 2010] MATHEMATICA 25^Range[0, 20] (* or *) NestList[25#&, 1, 20] (* Harvey P. Dale, Dec 12 2016 *) PROG (Sage) [lucas_number1(n, 25, 0) for n in xrange(1, 17)]# - Zerinvary Lajos, Apr 29 2009 (MAGMA)[25^n: n in [0..100]] [From Vincenzo Librandi, Nov 21 2010] (PARI) a(n)=25^n \\ Charles R Greathouse IV, Sep 24 2015 CROSSREFS Sequence in context: A207196 A207216 A171299 * A042202 A203341 A260048 Adjacent sequences:  A009966 A009967 A009968 * A009970 A009971 A009972 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.