login
A009969
Powers of 25.
31
1, 25, 625, 15625, 390625, 9765625, 244140625, 6103515625, 152587890625, 3814697265625, 95367431640625, 2384185791015625, 59604644775390625, 1490116119384765625, 37252902984619140625, 931322574615478515625, 23283064365386962890625, 582076609134674072265625, 14551915228366851806640625, 363797880709171295166015625, 9094947017729282379150390625
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 25), L(1, 25), P(1, 25), T(1, 25). Essentially same as Pisot sequences E(25, 625), L(25, 625), P(25, 625), T(25, 625). See A008776 for definitions of Pisot sequences.
A000005(a(n)) = A005408(n+1). - Reinhard Zumkeller, Mar 04 2007
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 25-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
FORMULA
G.f.: 1/(1-25*x). - Philippe Deléham, Nov 23 2008
E.g.f.: exp(25*x). - Zerinvary Lajos, Apr 29 2009
a(n) = 25^n; a(n) = 25*a(n-1), n > 0; a(0)=1. - Vincenzo Librandi, Nov 21 2010
a(n) = A000351(2n) = 5^(2n). - M. F. Hasler, Sep 02 2021
MATHEMATICA
25^Range[0, 20] (* or *) NestList[25#&, 1, 20] (* Harvey P. Dale, Dec 12 2016 *)
PROG
(Sage) [lucas_number1(n, 25, 0) for n in range(1, 17)] # Zerinvary Lajos, Apr 29 2009
(Magma) [25^n: n in [0..100]] // Vincenzo Librandi, Nov 21 2010
(PARI) a(n)=25^n \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
Bisection of A000351 (powers of 5).
Cf. A218728 (partial sums).
Sequence in context: A207196 A207216 A171299 * A042202 A203341 A260048
KEYWORD
nonn,easy
STATUS
approved