login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159683
The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 3*n(j) + 1 = a(j)*a(j) and 5*n(j) + 1 = b(j)*b(j) with positive integer numbers.
3
0, 16, 1008, 62496, 3873760, 240110640, 14882985936, 922505017408, 57180428093376, 3544264036771920, 219687189851765680, 13617061506772700256, 844038126230055650208, 52316746764756677612656, 3242794261288683956334480, 201000927453133648615125120
OFFSET
1,2
FORMULA
The a(j) recurrence is a(1)=1, a(2)=7, a(t+2) = 8*a(t+1) - a(t) resulting in terms 1, 7, 55. 433, 3409, ... (A070997).
The b(j) recurrence is b(1)=1, b(2)=9, b(t+2) = 8*b(t+1) - b(t) resulting in terms 1, 9, 71, 559, 4401, ... (A057080).
The n(j) recurrence is n(0) = n(1) = 0, n(2)=16, n(t+3) = 63*(n(t+2) - n(t+1)) + n(t) resulting in terms 0, 0, 16, 1008, 62496, ... (this sequence).
From Colin Barker, Sep 25 2015: (Start)
a(n) = 63*a(n-1) - 63*a(n-2) + a(n-3) for n>3.
G.f.: 16*x^2 / ((1-x)*(1-62*x+x^2)). (End)
a(n) = (-8+(4+sqrt(15))*(31+8*sqrt(15))^(-n) -(-4+sqrt(15))*(31+8*sqrt(15))^n)/30. - Colin Barker, Mar 03 2016
a(n) = (4/15)*(-1 + ChebyshevU(n, 31) - 61*ChebyshevU(n-1, 31)). - G. C. Greubel, Sep 27 2022
MAPLE
for a from 1 by 2 to 100000 do b:=sqrt((5*a*a-2)/3): if (trunc(b)=b) then
n:=(a*a-1)/3: La:=[op(La), a]:Lb:=[op(Lb), b]:Ln:=[op(Ln), n]: end if: end do:
# Second program
seq((4/15)*(simplify(ChebyshevU(n, 31) - 61*ChebyshevU(n-1, 31)) -1), n=1..30); # G. C. Greubel, Sep 27 2022
MATHEMATICA
CoefficientList[Series[16*x/((1-x)*(1-62*x+x^2)), {x, 0, 30}], x] (* G. C. Greubel, Jun 02 2018 *)
LinearRecurrence[{63, -63, 1}, {0, 16, 1008}, 30] (* Harvey P. Dale, May 07 2022 *)
PROG
(PARI) concat(0, Vec(16*x^2/((1-x)*(1-62*x+x^2)) + O(x^30))) \\ Colin Barker, Sep 25 2015
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!(16*x^2/((1-x)*(1-62*x+x^2)))); // G. C. Greubel, Jun 02 2018
(SageMath) [(4/15)*(-1 + chebyshev_U(n, 31) - 61*chebyshev_U(n-1, 31)) for n in range(1, 30)] # G. C. Greubel, Sep 27 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Weisenhorn, Apr 19 2009
STATUS
approved