The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A159680 The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 9*n(j) + 1 = a(j)*a(j) and 11*n(j) + 1 = b(j)*b(j) with positive integer numbers. 1
 0, 40, 15960, 6352080, 2528111920, 1006182192120, 400457984351880, 159381271589856160, 63433345634778399840, 25246312181370213280200, 10047968814839710107119800, 3999066341994023252420400240, 1591618356144806414753212175760, 633460106679290959048526025552280 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Colin Barker, Table of n, a(n) for n = 1..350 Index entries for linear recurrences with constant coefficients, signature (399,-399,1). FORMULA The a(j) recurrence is a(1)=1; a(2)=19; a(t+2) = 20*a(t+1) - a(t) resulting in terms 1, 19, 379, 7561, ... (A075839). The b(j) recurrence is b(1)=1; b(2)=21; b(t+2) = 20*b(t+1) - b(t) resulting in terms 1, 21, 419, 8359, ... (A083043). The n(j) recurrence is n(0)=n(1)=0; n(2)=40; n(t+3) = 399*(n(t+2) - n(t+1)) + n(t) resulting in terms 0, 0, 40, 15960, 6352080 as listed above G.f.: 40*x^2/((1-x)*(1-398*x+x^2)). - R. J. Mathar, Apr 20 2009 a(n) = (-20 + (10 + 3*sqrt(11))*(199 + 60*sqrt(11))^(-n) + (10 - 3*sqrt(11))*(199 + 60*sqrt(11))^n)/198. - Colin Barker, Jul 26 2016 From G. C. Greubel, Jun 26 2022: (Start) a(n) = (10/99)*( ChebyshevU(n, 199) - 397*ChebyshevU(n-1, 199) - 1 ). E.g.f.: (10/99)*(exp(199*x)*( (3*sqrt(11)/10)*sinh(60*sqrt(11)*x) + cosh(60*sqrt(11)*x) ) - exp(x)). (End) MAPLE for a from 1 by 2 to 100000 do b:=sqrt((9*a*a-2)/7): if (trunc(b)=b) then n:=(a*a-1)/7: La:=[op(La), a]:Lb:=[op(Lb), b]:Ln:=[op(Ln), n]: end if: end do: MATHEMATICA LinearRecurrence[{399, -399, 1}, {0, 40, 15960}, 50] (* G. C. Greubel, Jun 03 2018 *) PROG (PARI) a(n) = round((-20+(10+3*sqrt(11))*(199+60*sqrt(11))^(-n)+(10-3*sqrt(11))*(199+60*sqrt(11))^n)/198) \\ Colin Barker, Jul 26 2016 (PARI) concat(0, Vec(-40*x^2/((x-1)*(x^2-398*x+1)) + O(x^20))) \\ Colin Barker, Jul 26 2016 (Magma) R:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!(40*x^2/((1-x)*(1-398*x+x^2)))); // G. C. Greubel, Jun 03 2018 (SageMath) [(10/99)*(chebyshev_U(n, 199) -397*chebyshev_U(n-1, 199) -1) for n in (1..30)] # G. C. Greubel, Jun 26 2022 CROSSREFS Cf. A075839, A083043, A157456. Sequence in context: A210347 A221391 A279578 * A240628 A159390 A204682 Adjacent sequences: A159677 A159678 A159679 * A159681 A159682 A159683 KEYWORD nonn,easy AUTHOR Paul Weisenhorn, Apr 19 2009 EXTENSIONS More terms from R. J. Mathar, Apr 20 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 18:27 EST 2022. Contains 358510 sequences. (Running on oeis4.)