login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159680 The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 9*n(j) + 1 = a(j)*a(j) and 11*n(j) + 1 = b(j)*b(j) with positive integer numbers. 1
0, 40, 15960, 6352080, 2528111920, 1006182192120, 400457984351880, 159381271589856160, 63433345634778399840, 25246312181370213280200, 10047968814839710107119800, 3999066341994023252420400240, 1591618356144806414753212175760, 633460106679290959048526025552280 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Colin Barker, Table of n, a(n) for n = 1..350

Index entries for linear recurrences with constant coefficients, signature (399,-399,1).

FORMULA

The a(j) recurrence is a(1)=1; a(2)=19; a(t+2) = 20*a(t+1) - a(t) resulting in terms 1, 19, 379, 7561, ... (A075839).

The b(j) recurrence is b(1)=1; b(2)=21; b(t+2) = 20*b(t+1) - b(t) resulting in terms 1, 21, 419, 8359, ... (A083043).

The n(j) recurrence is n(0)=n(1)=0; n(2)=40; n(t+3) = 399*(n(t+2) - n(t+1)) + n(t) resulting in terms 0, 0, 40, 15960, 6352080 as listed above

G.f.: 40*x^2/((1-x)*(1-398*x+x^2)). - R. J. Mathar, Apr 20 2009

a(n) = (-20 + (10 + 3*sqrt(11))*(199 + 60*sqrt(11))^(-n) + (10 - 3*sqrt(11))*(199 + 60*sqrt(11))^n)/198. - Colin Barker, Jul 26 2016

From G. C. Greubel, Jun 26 2022: (Start)

a(n) = (10/99)*( ChebyshevU(n, 199) - 397*ChebyshevU(n-1, 199) - 1 ).

E.g.f.: (10/99)*(exp(199*x)*( (3*sqrt(11)/10)*sinh(60*sqrt(11)*x) + cosh(60*sqrt(11)*x) ) - exp(x)). (End)

MAPLE

for a from 1 by 2 to 100000 do b:=sqrt((9*a*a-2)/7): if (trunc(b)=b) then

n:=(a*a-1)/7: La:=[op(La), a]:Lb:=[op(Lb), b]:Ln:=[op(Ln), n]: end if: end do:

MATHEMATICA

LinearRecurrence[{399, -399, 1}, {0, 40, 15960}, 50] (* G. C. Greubel, Jun 03 2018 *)

PROG

(PARI) a(n) = round((-20+(10+3*sqrt(11))*(199+60*sqrt(11))^(-n)+(10-3*sqrt(11))*(199+60*sqrt(11))^n)/198) \\ Colin Barker, Jul 26 2016

(PARI) concat(0, Vec(-40*x^2/((x-1)*(x^2-398*x+1)) + O(x^20))) \\ Colin Barker, Jul 26 2016

(Magma) R<x>:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!(40*x^2/((1-x)*(1-398*x+x^2)))); // G. C. Greubel, Jun 03 2018

(SageMath) [(10/99)*(chebyshev_U(n, 199) -397*chebyshev_U(n-1, 199) -1) for n in (1..30)] # G. C. Greubel, Jun 26 2022

CROSSREFS

Cf. A075839, A083043, A157456.

Sequence in context: A210347 A221391 A279578 * A240628 A159390 A204682

Adjacent sequences: A159677 A159678 A159679 * A159681 A159682 A159683

KEYWORD

nonn,easy

AUTHOR

Paul Weisenhorn, Apr 19 2009

EXTENSIONS

More terms from R. J. Mathar, Apr 20 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 18:27 EST 2022. Contains 358510 sequences. (Running on oeis4.)