This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A159679 a(n) are solutions of the 2 equations: 7*a(n)+1 = c(n)^2 and 9*a(n)+1 = b(n)^2. 3
 0, 32, 8160, 2072640, 526442432, 133714305120, 33962907058080, 8626444678447232, 2191082985418538880, 556526451851630428320, 141355527687328710254432, 35903747506129640774197440, 9119410511029241427935895360, 2316294366053921193054943224032 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Colin Barker, Table of n, a(n) for n = 1..400 Index entries for linear recurrences with constant coefficients, signature (255,-255,1). FORMULA G.f.: -32*x^2 / ((x-1)*(x^2-254*x+1)). c(n) = A157456(n). b(n) = A159678(n). a(n+3) = 255*(a(n+2) -a(n+1)) + a(n). a(n) = 2*A077412(n-2)*A077412(n-1). - Johannes Boot, Jan 17 2011 a(n) = (-16+(8+3*sqrt(7))*(127+48*sqrt(7))^(-n)+(8-3*sqrt(7))*(127+48*sqrt(7))^n)/126. - Colin Barker, Jul 25 2016 MAPLE for a from 1 by 2 to 100000 do b:=sqrt((9*a*a-2)/7): if (trunc(b)=b) then n:=(a*a-1)/7: La:=[op(La), a]:Lb:=[op(Lb), b]:Ln:=[op(Ln), n]: end if: end do: MATHEMATICA LinearRecurrence[{255, -255, 1}, {0, 32, 8160}, 50] (* or *) CoefficientList[Series[32*x^2/((1-x)*(x^2-254*x+1)), {x, 0, 50}], x] (* G. C. Greubel, Jun 03 2018 *) PROG (PARI) concat(0, Vec(32*x^2/(-x^3+255*x^2-255*x+1) + O(x^100))) \\ Colin Barker, Mar 18 2014 (PARI) a(n) = round((-16+(8+3*sqrt(7))*(127+48*sqrt(7))^(-n)+(8-3*sqrt(7))*(127+48*sqrt(7))^n)/126) \\ Colin Barker, Jul 25 2016 (MAGMA) m:=50; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(32*x^2/((1-x)*(x^2-254*x+1)))); // G. C. Greubel, Jun 03 2018 CROSSREFS Cf. A157456, A159678. Sequence in context: A221614 A086752 A248001 * A139568 A139294 A227603 Adjacent sequences:  A159676 A159677 A159678 * A159680 A159681 A159682 KEYWORD nonn,easy AUTHOR Paul Weisenhorn, Apr 19 2009 EXTENSIONS More terms from Colin Barker, Mar 18 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 18 19:00 EDT 2019. Contains 325144 sequences. (Running on oeis4.)