OFFSET
1,2
LINKS
Colin Barker, Table of n, a(n) for n = 1..400
Index entries for linear recurrences with constant coefficients, signature (255,-255,1).
FORMULA
G.f.: 32*x^2 / ((1-x)*(1-254*x+x^2)).
c(n) = A157456(n).
b(n) = A159678(n).
a(n+3) = 255*(a(n+2) -a(n+1)) + a(n).
a(n) = (-16+(8+3*sqrt(7))*(127+48*sqrt(7))^(-n)+(8-3*sqrt(7))*(127+48*sqrt(7))^n)/126. - Colin Barker, Jul 25 2016
a(n) = (8/63)*(-1 + ChebyshevU(n, 127) - 253*ChebyshevU(n-1, 127)). - G. C. Greubel, Sep 27 2022
MAPLE
for a from 1 by 2 to 100000 do b:=sqrt((9*a*a-2)/7): if (trunc(b)=b) then
n:=(a*a-1)/7: La:=[op(La), a]:Lb:=[op(Lb), b]:Ln:=[op(Ln), n]: end if: end do:
# Second program
seq((8/63)*(simplify(ChebyshevU(n, 127) -253*ChebyshevU(n-1, 127)) -1), n=1..30); # G. C. Greubel, Sep 27 2022
MATHEMATICA
LinearRecurrence[{255, -255, 1}, {0, 32, 8160}, 50] (* or *) CoefficientList[Series[32*x^2/((1-x)*(x^2-254*x+1)), {x, 0, 50}], x] (* G. C. Greubel, Jun 03 2018 *)
PROG
(PARI) concat(0, Vec(32*x^2/(-x^3+255*x^2-255*x+1) + O(x^100))) \\ Colin Barker, Mar 18 2014
(PARI) a(n) = round((-16+(8+3*sqrt(7))*(127+48*sqrt(7))^(-n)+(8-3*sqrt(7))*(127+48*sqrt(7))^n)/126) \\ Colin Barker, Jul 25 2016
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); [0] cat Coefficients(R!(32*x^2/((1-x)*(1-254*x+x^2)))); // G. C. Greubel, Jun 03 2018
(SageMath) [(8/63)*(-1 + chebyshev_U(n, 127) - 253*chebyshev_U(n-1, 127)) for n in range(1, 30)] # G. C. Greubel, Sep 27 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Weisenhorn, Apr 19 2009
EXTENSIONS
More terms from Colin Barker, Mar 18 2014
STATUS
approved