login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227603
Number of lattice paths from {6}^n to {0}^n using steps that decrement one component such that for each point (p_1,p_2,...,p_n) we have p_1<=p_2<=...<=p_n.
2
1, 32, 8925, 8285506, 16104165970, 51630369256916, 237791136700913751, 1441565191975184121126, 10844768238749437970393066, 97106818062816381529413045436, 1003769793669980634048599763674485, 11703712713157396870910671640141678850
OFFSET
0,2
LINKS
FORMULA
Conjecture: a(n) ~ 2^(5/2) * 6^(6*n + 67/2) / (5^29 * Pi^(5/2) * n^(35/2)). - Vaclav Kotesovec, Nov 21 2016
MAPLE
b:= proc(l) option remember; `if`(l[-1]=0, 1, add(add(b(subsop(
i=j, l)), j=`if`(i=1, 0, l[i-1])..l[i]-1), i=1..nops(l)))
end:
a:= n-> `if`(n=0, 1, b([6$n])):
seq(a(n), n=0..12);
CROSSREFS
Row n=6 of A227578.
Sequence in context: A159679 A139568 A139294 * A327130 A231035 A213813
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 17 2013
STATUS
approved