login
A227601
Number of lattice paths from {n}^10 to {0}^10 using steps that decrement one component such that for each point (p_1,p_2,...,p_10) we have p_1<=p_2<=...<=p_10.
1
1, 1, 58786, 72686739116, 569413385415535738, 15313737501505148093502344, 1003769793669980634048599763674485, 129559009610760457771091688202936893773393, 28544115728527488452514857447327666866636823456709
OFFSET
0,3
MAPLE
b:= proc(l) option remember; `if`(l[-1]=0, 1, add(add(b(subsop(
i=j, l)), j=`if`(i=1, 0, l[i-1])..l[i]-1), i=1..nops(l)))
end:
a:= n-> `if`(n=0, 1, b([n$10])):
seq(a(n), n=0..10);
CROSSREFS
Column k=10 of A227578.
Sequence in context: A251519 A255781 A234447 * A147700 A214118 A157131
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 17 2013
STATUS
approved