login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227602
Number of lattice paths from {5}^n to {0}^n using steps that decrement one component such that for each point (p_1,p_2,...,p_n) we have p_1<=p_2<=...<=p_n.
2
1, 16, 1257, 238636, 77767945, 36470203156, 22228291051255, 16513520723284922, 14323116388173517180, 14071120934043157192832, 15313737501505148093502344, 18156604289232210133044514152, 23151467541948649805794187113781, 31425801906523386705389663813716908
OFFSET
0,2
LINKS
FORMULA
a(n) ~ 9 * 5^(5*n + 41/2) / (2^37 * Pi^2 * n^12). - Vaclav Kotesovec, Nov 21 2016
MAPLE
b:= proc(l) option remember; `if`(l[-1]=0, 1, add(add(b(subsop(
i=j, l)), j=`if`(i=1, 0, l[i-1])..l[i]-1), i=1..nops(l)))
end:
a:= n-> `if`(n=0, 1, b([5$n])):
seq(a(n), n=0..14);
MATHEMATICA
b[l_] := b[l] = If[l[[-1]] == 0, 1, Sum[Sum[b[ReplacePart[l, i -> j]], {j, If[i == 1, 0, l[[i - 1]]], l[[i]] - 1}], {i, 1, Length[l]}]];
a[n_] := If[n == 0, 1, b[Array[5&, n]]];
a /@ Range[0, 14] (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz *)
CROSSREFS
Row n=5 of A227578.
Sequence in context: A064346 A222888 A113104 * A186856 A000490 A308587
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 17 2013
STATUS
approved