login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227599
Number of lattice paths from {n}^8 to {0}^8 using steps that decrement one component such that for each point (p_1,p_2,...,p_8) we have p_1<=p_2<=...<=p_8.
2
1, 1, 4862, 213446666, 35566911169298, 14323116388173517180, 10844768238749437970393066, 13220723286785303728967102618052, 23408169635197679203800470649923362577, 55994660641252674524946692511672567020920313, 171650174624972457949599385901886660192203614365332
OFFSET
0,3
LINKS
FORMULA
Conjecture: a(n) ~ 42 * sqrt(5) * 9^(8*n + 58) / (8^20 * 10^29 * n^(63/2) * Pi^(7/2)). - Vaclav Kotesovec, Nov 26 2016
MAPLE
b:= proc(l) option remember; `if`(l[-1]=0, 1, add(add(b(subsop(
i=j, l)), j=`if`(i=1, 0, l[i-1])..l[i]-1), i=1..nops(l)))
end:
a:= n-> `if`(n=0, 1, b([n$8])):
seq(a(n), n=0..10);
CROSSREFS
Column k=8 of A227578.
Sequence in context: A258397 A215549 A295442 * A321978 A147697 A208629
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 17 2013
STATUS
approved