login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of lattice paths from {n}^8 to {0}^8 using steps that decrement one component such that for each point (p_1,p_2,...,p_8) we have p_1<=p_2<=...<=p_8.
2

%I #7 Nov 26 2016 08:32:00

%S 1,1,4862,213446666,35566911169298,14323116388173517180,

%T 10844768238749437970393066,13220723286785303728967102618052,

%U 23408169635197679203800470649923362577,55994660641252674524946692511672567020920313,171650174624972457949599385901886660192203614365332

%N Number of lattice paths from {n}^8 to {0}^8 using steps that decrement one component such that for each point (p_1,p_2,...,p_8) we have p_1<=p_2<=...<=p_8.

%H Vaclav Kotesovec, <a href="/A227599/b227599.txt">Table of n, a(n) for n = 0..37</a>

%F Conjecture: a(n) ~ 42 * sqrt(5) * 9^(8*n + 58) / (8^20 * 10^29 * n^(63/2) * Pi^(7/2)). - _Vaclav Kotesovec_, Nov 26 2016

%p b:= proc(l) option remember; `if`(l[-1]=0, 1, add(add(b(subsop(

%p i=j, l)), j=`if`(i=1, 0, l[i-1])..l[i]-1), i=1..nops(l)))

%p end:

%p a:= n-> `if`(n=0, 1, b([n$8])):

%p seq(a(n), n=0..10);

%Y Column k=8 of A227578.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Jul 17 2013