login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227598
Number of lattice paths from {n}^7 to {0}^7 using steps that decrement one component such that for each point (p_1,p_2,...,p_7) we have p_1<=p_2<=...<=p_7.
2
1, 1, 1430, 12310294, 315051017342, 16513520723284922, 1441565191975184121126, 184570140930218389159747070, 31862864761563509123808857974124, 6993293261428532974934599912795818724, 1869718376047919275097272876105318640045150
OFFSET
0,3
LINKS
FORMULA
Conjecture: a(n) ~ 25 * sqrt(7) * 8^(7*n + 44) / (7^17 * 3^43 * Pi^3 * n^24). - Vaclav Kotesovec, Nov 21 2016
MAPLE
b:= proc(l) option remember; `if`(l[-1]=0, 1, add(add(b(subsop(
i=j, l)), j=`if`(i=1, 0, l[i-1])..l[i]-1), i=1..nops(l)))
end:
a:= n-> `if`(n=0, 1, b([n$7])):
seq(a(n), n=0..12);
CROSSREFS
Column k=7 of A227578.
Sequence in context: A258396 A215548 A274253 * A321977 A147695 A151996
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 17 2013
STATUS
approved