login
A227598
Number of lattice paths from {n}^7 to {0}^7 using steps that decrement one component such that for each point (p_1,p_2,...,p_7) we have p_1<=p_2<=...<=p_7.
2
1, 1, 1430, 12310294, 315051017342, 16513520723284922, 1441565191975184121126, 184570140930218389159747070, 31862864761563509123808857974124, 6993293261428532974934599912795818724, 1869718376047919275097272876105318640045150
OFFSET
0,3
LINKS
FORMULA
Conjecture: a(n) ~ 25 * sqrt(7) * 8^(7*n + 44) / (7^17 * 3^43 * Pi^3 * n^24). - Vaclav Kotesovec, Nov 21 2016
MAPLE
b:= proc(l) option remember; `if`(l[-1]=0, 1, add(add(b(subsop(
i=j, l)), j=`if`(i=1, 0, l[i-1])..l[i]-1), i=1..nops(l)))
end:
a:= n-> `if`(n=0, 1, b([n$7])):
seq(a(n), n=0..12);
CROSSREFS
Column k=7 of A227578.
Sequence in context: A258396 A215548 A274253 * A321977 A147695 A151996
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 17 2013
STATUS
approved