login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227596
Number of lattice paths from {n}^5 to {0}^5 using steps that decrement one component such that for each point (p_1,p_2,...,p_5) we have p_1<=p_2<=...<=p_5.
2
1, 1, 132, 49100, 34426812, 36470203156, 51630369256916, 90650832149396184, 187978502469162658572, 445073778727031182727610, 1174228543974568589770758656, 3389786811049267225428045061056, 10559434352810002520295112134863908
OFFSET
0,3
LINKS
FORMULA
a(n) ~ 2*sqrt(5) * 6^(5*n+21) / (5^7 * 7^12 * Pi^2 * n^12). - Vaclav Kotesovec, Nov 20 2016
MAPLE
b:= proc(l) option remember; `if`(l[-1]=0, 1, add(add(b(subsop(
i=j, l)), j=`if`(i=1, 0, l[i-1])..l[i]-1), i=1..nops(l)))
end:
a:= n-> `if`(n=0, 1, b([n$5])):
seq(a(n), n=0..13);
MATHEMATICA
b[l_] := b[l] = If[l[[-1]] == 0, 1, Sum[Sum[b[ReplacePart[l, i -> j]], {j, If[i == 1, 0, l[[i - 1]]], l[[i]] - 1}], {i, 1, Length[l]}]];
a[n_] := If[n == 0, 1, b[Array[n&, 5]]];
a /@ Range[0, 13] (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz *)
CROSSREFS
Column k=5 of A227578.
Sequence in context: A183500 A146545 A181194 * A267951 A268098 A289294
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 17 2013
STATUS
approved