This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A159676 Numerator of Hermite(n, 17/20). 1
 1, 17, 89, -5287, -143279, 1793857, 173774569, 801539273, -229658228959, -5186652729103, 325211715731449, 15901904625640633, -445133395973297039, -45731838833083568863, 379905569368151630729, 134507543411892570538793, 1146911529897718806972481 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA Conjecture: a(n) -17*a(n-1) +200*(n-1)*a(n-2)=0. - R. J. Mathar, Feb 17 2014 From G. C. Greubel, Jul 11 2018: (Start) a(n) = 10^n * Hermite(n, 17/20). E.g.f.: exp(17*x - 100*x^2). a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(17/10)^(n-2*k)/(k!*(n-2*k)!)). (End) EXAMPLE Numerator of 1, 17/10, 89/100, -5287/1000, -143279/10000, 1793857/100000,... MAPLE A159676 := proc(n)         orthopoly[H](n, 17/20) ;         numer(%) ; end proc: # R. J. Mathar, Feb 17 2014 MATHEMATICA Numerator/@Table[HermiteH[n, 17/20], {n, 0, 35}]  (* Harvey P. Dale, Mar 13 2011 *) Table[10^n*HermiteH[n, 17/20], {n, 0, 50}] (* G. C. Greubel, Jul 11 2018 *) PROG (PARI) a(n)=numerator(polhermite(n, 17/20)) \\ Charles R Greathouse IV, Jan 29 2016 (MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(17/10)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 11 2018 CROSSREFS Cf. A011557 (denominators). Sequence in context: A267820 A200670 A057638 * A061971 A061222 A228462 Adjacent sequences:  A159673 A159674 A159675 * A159677 A159678 A159679 KEYWORD sign,frac AUTHOR N. J. A. Sloane, Nov 12 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 17 16:38 EDT 2019. Contains 325107 sequences. (Running on oeis4.)