login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159674
Expansion of (1 - x)/(1 - 32*x + x^2).
4
1, 31, 991, 31681, 1012801, 32377951, 1035081631, 33090234241, 1057852414081, 33818187016351, 1081124132109151, 34562154040476481, 1104907805163138241, 35322487611179947231, 1129214695752595173151, 36099547776471865593601, 1154056314151347103822081
OFFSET
0,2
COMMENTS
Previous name was: The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 15*n(j) + 1 = a(j)*a(j) and 17*n(j) + 1 = b(j)*b(j) with positive integers.
Positive values of x (or y) satisfying x^2 - 32*x*y + y^2 + 30 = 0. - Colin Barker, Feb 24 2014
FORMULA
The a(j) recurrence is: a(0)=1, a(1)=31, a(t+2) = 32*a(t+1) - a(t) resulting in terms 1, 31, 991, 31681, ... (this sequence).
The b(j) recurrence is: b(0)=1, b(1)=33, b(t+2) = 32*b(t+1) - b(t) resulting in terms 1, 33, 1055, 33727, ... (A159675).
The n(j) recurrence is: n(-1) = n(0) = 0, n(1) = 64, n(t+3) = 1023*(n(t+2) -n(t+1)) + n(t) resulting in terms 0, 0, 64, 65472, 66912384, ... (A159677).
a(n) = (1/34)*(17-sqrt(255))*(1+(16+sqrt(255))^(2*n+1))/(16+sqrt(255))^n. - Bruno Berselli, Feb 25 2014
a(n) = ChebyshevU(n, 16) - ChebyshevU(n-1, 16) = A029548(n) - A029548(n-1). - G. C. Greubel, Sep 25 2022
MAPLE
for a from 1 by 2 to 100000 do b:=sqrt((17*a*a-2)/15): if (trunc(b)=b) then
n:=(a*a-1)/15: La:=[op(La), a]:Lb:=[op(Lb), b]:Ln:=[op(Ln), n]: endif: enddo:
# Second program
seq(simplify(ChebyshevU(n, 16) -ChebyshevU(n-1, 16)), n=0..30); # G. C. Greubel, Sep 25 2022
MATHEMATICA
CoefficientList[Series[(1-x)/(1-32*x+x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 26 2014 *)
LinearRecurrence[{32, -1}, {1, 31}, 30] (* Harvey P. Dale, Mar 21 2017 *)
PROG
(PARI) concat([0], Vec((-x+1)/(x^2-32*x+1) + O(x^100))) \\ Colin Barker, Feb 24 2014
(Magma)
A029548:= func< n | Evaluate(ChebyshevSecond(n), 16) >;
[A029548(n+1) -A029548(n): n in [0..30]]; // G. C. Greubel, Sep 25 2022
(SageMath)
def A159674(n): return chebyshev_U(n, 16) - chebyshev_U(n-1, 16)
[A159674(n) for n in range(31)] # G. C. Greubel, Sep 25 2022
CROSSREFS
Cf. similar sequences listed in A238379.
Sequence in context: A171305 A009975 A042862 * A138958 A158675 A154808
KEYWORD
nonn,easy
AUTHOR
Paul Weisenhorn, Apr 19 2009
EXTENSIONS
More terms and new name from Colin Barker, Feb 24 2014
Set offset to 0 by Joerg Arndt, Feb 25 2014
STATUS
approved