login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159673 Expansion of 56*x^2/(1 - 783*x + 783*x^2 - x^3). 3
0, 56, 43848, 34289136, 26814060560, 20968561068840, 16397387941772376, 12822736401904929248, 10027363468901712899616, 7841385409944737582570520, 6131953363213315887857247080, 4795179688647403079566784646096, 3749824384568905994905337736000048 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Previous name was: The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 13*n(j) + 1 = a(j)*a(j) and 15*n(j) + 1 = b(j)*b(j) with positive integer numbers.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..200

Index entries for linear recurrences with constant coefficients, signature (783,-783,1).

FORMULA

The a(j) recurrence is a(1)=1, a(2)=27, a(t+2) = 28*a(t+1) - a(t) resulting in terms 1, 27, 755, 21113, ... (A159668).

The b(j) recurrence is b(1)=1, b(2)=29, b(t+2) = 28*b(t+1) - b(t) resulting in terms 1, 29, 811, 22679, ... (A159669).

The n(j) recurrence is n(0) = n(1) = 0, n(2) = 56, n(t+3) = 783*(n(t+2) -n(t+1)) + n(t) resulting in terms 0, 0, 56, 43848, 34289136, ... (this sequence).

G.f.: 56*x^2/((1-x)*(1 - 782*x + x^2)). - Vincenzo Librandi, Feb 26 2014

a(n) = -((391+28*sqrt(195))^(-n)*(-1+(391+28*sqrt(195))^n)*(14+sqrt(195)+(-14+sqrt(195))*(391+28*sqrt(195))^n))/390. - Colin Barker, Jul 25 2016

a(n) = (14/195)*(-1 + ChebyshevU(n, 391) - 781*ChebyshevU(n-1, 391)). - G. C. Greubel, Sep 25 2022

MAPLE

for a from 1 by 2 to 100000 do b:=sqrt((15*a*a-2)/13): if (trunc(b)=b) then

n:=(a*a-1)/13: La:=[op(La), a]:Lb:=[op(Lb), b]:Ln:=[op(Ln), n]: endif: enddo:

# Second program

seq((14/195)*(simplify(ChebyshevU(n, 391) -781*ChebyshevU(n-1, 391)) -1), n=1..30); # G. C. Greubel, Sep 25 2022

MATHEMATICA

CoefficientList[Series[56 x/(- x^3 + 783 x^2 - 783 x + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 26 2014 *)

LinearRecurrence[{783, -783, 1}, {0, 56, 43848}, 20] (* Harvey P. Dale, Jan 06 2019 *)

PROG

(PARI) Vec(56*x^2/(-x^3+783*x^2-783*x+1) + O(x^100)) \\ Colin Barker, Feb 24 2014

(PARI) a(n) = round(-((391+28*sqrt(195))^(-n)*(-1+(391+28*sqrt(195))^n)*(14+sqrt(195)+(-14+sqrt(195))*(391+28*sqrt(195))^n))/390) \\ Colin Barker, Jul 25 2016

(Magma)

b:= func< n | Evaluate(ChebyshevSecond(n), 391) >;

[(14/195)*(-1 +b(n+1) -781*b(n)): n in [1..30]]; // G. C. Greubel, Sep 25 2022

(SageMath)

def A159673(n): return (14/195)*(-1 + chebyshev_U(n, 391) - 781*chebyshev_U(n-1, 391))

[A159673(n) for n in range(1, 30)] # G. C. Greubel, Sep 25 2022

CROSSREFS

Cf. A157456, A159668, A159669.

Sequence in context: A202579 A090218 A184897 * A009837 A308390 A093256

Adjacent sequences: A159670 A159671 A159672 * A159674 A159675 A159676

KEYWORD

nonn,easy

AUTHOR

Paul Weisenhorn, Apr 19 2009

EXTENSIONS

More terms and new name from Colin Barker, Feb 24 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 09:12 EST 2022. Contains 358585 sequences. (Running on oeis4.)