The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A159668 Expansion of (1 - x)/(1 - 28*x + x^2). 5
 1, 27, 755, 21113, 590409, 16510339, 461699083, 12911063985, 361048092497, 10096435525931, 282339146633571, 7895399670214057, 220788851619360025, 6174192445671866643, 172656599627192905979, 4828210597115729500769, 135017240119613233115553 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Previous name was: The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 13*n(j)+1=a(j)*a(j) and 15*n(j)+1=b(j)*b(j) with positive integer numbers. Positive values of x (or y) satisfying x^2 - 28xy + y^2 + 26 = 0. - Colin Barker, Feb 23 2014 REFERENCES Mohammad K. Azarian, Diophantine Pair, Problem B-881, Fibonacci Quarterly, Vol. 37, No. 3, August 1999, pp. 277-278.  Solution published in Vol. 38, No. 2, May 2000, pp. 183-184. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..199 Index entries for linear recurrences with constant coefficients, signature (28,-1). FORMULA G.f.: (1 - x)/(1 - 28*x + x^2). The a(j) recurrence is a(0)=1; a(1)=27; a(t+2)=28*a(t+1)-a(t) resulting in terms 1, 27, 755, 21113.. (this sequence) The b(j) recurrence is b(0)=1; b(1)=29; b(t+2)=28*b(t+1)-b(t) resulting in terms 1, 29, 811, 22679... (A159669) The n(j) recurrence is n(0)=n(1)=0; n(2)=56; n(t+3)=783*(n(t+2)-n(t+1))+n(t) resulting in terms 0, 0, 56, 43848, 34289136... (A159673) a(n) = (1/30)*(15-sqrt(195))*(1+(14+sqrt(195))^(2*n+1))/(14+sqrt(195))^n. [Bruno Berselli, Feb 25 2014] a(0)=1, a(1)=27, a(n)=28*a(n-1)-a(n-2). - Harvey P. Dale, Apr 09 2014 MAPLE for a from 1 by 2 to 100000 do b:=sqrt((15*a*a-2)/13): if (trunc(b)=b) then n:=(a*a-1)/13: La:=[op(La), a]:Lb:=[op(Lb), b]:Ln:=[op(Ln), n]: endif: enddo: MATHEMATICA CoefficientList[Series[(-x + 1)/(x^2 - 28 x + 1), {x, 0, 20}], x] (* Vincenzo Librandi, Feb 25 2014 *) LinearRecurrence[{28, -1}, {1, 27}, 40] (* Harvey P. Dale, Apr 09 2014 *) PROG (PARI) Vec((-x+1)/(x^2-28*x+1) + O(x^100)) \\ Colin Barker, Feb 23 2014 (MAGMA) I:=[1, 27]; [n le 2 select I[n] else 28*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 25 2014 CROSSREFS Cf. A157456, A159669, A159673. Cf. similar sequences listed in A238379. Sequence in context: A042406 A279652 A284039 * A158645 A232951 A138979 Adjacent sequences:  A159665 A159666 A159667 * A159669 A159670 A159671 KEYWORD nonn,easy AUTHOR Paul Weisenhorn, Apr 19 2009 EXTENSIONS More terms from Colin Barker, Feb 23 2014 New name and offset changed to 0 from Joerg Arndt, Feb 23 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 6 15:41 EDT 2020. Contains 333276 sequences. (Running on oeis4.)