login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159665
The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 11*n(j) + 1 = a(j)*a(j) and 13*n(j) + 1 = b(j)*b(j); with positive integer numbers.
2
0, 48, 27600, 15842400, 9093510048, 5219658925200, 2996075129554800, 1719741904705530048, 987128857225844692800, 566610244305730148137200, 325233293102631879186060048, 186683343630666392922650330400, 107155914010709406905722103589600
OFFSET
1,2
FORMULA
The a(j) recurrence is a(1)=1; a(2)=23; a(t+2) = 24*a(t+1) - a(t) resulting in terms 1, 23, 551, 13201, ... (A159664).
The b(j) recurrence is b(1)=1; b(2)=25; b(t+2) = 24*b(t+1) - b(t) resulting in terms 1, 25, 599, 14351, ... (A159661).
The n(j) recurrence is n(0)=n(1)=1; n(2)=48; n(t+3) = 575*(n(t+2) - n(t+1)) + n(t) resulting in terms 0, 0, 48, 27600, 15842400 as listed above.
From Colin Barker, Sep 25 2015: (Start)
a(n) = 575*a(n-1) - 575*a(n-2) + a(n-3) for n > 3.
G.f.: 48*x^2 / ((1-x)*(1-574*x+x^2)). (End)
a(n) = (-24 + (12 + sqrt(143))*(287 + 24*sqrt(143))^(-n) - (-12 + sqrt(143))*(287 + 24*sqrt(143))^n)/286. - Colin Barker, Jul 26 2016
From G. C. Greubel, Jun 25 2022: (Start)
a(n) = (12/143)*(ChebyshevU(n, 287) - 573*ChebyshevU(n-1, 287) - 1).
E.g.f.: (12/143)*(exp(287*x)*( (sqrt(143)/12)*sinh(24*sqrt(143)*x) + cosh(24*sqrt(143)*x) ) - exp(x)). (End)
MAPLE
for a from 1 by 2 to 100000 do b:=sqrt((13*a*a-2)/11): if (trunc(b)=b) then
n:=(a*a-1)/11: La:=[op(La), a]:Lb:=[op(Lb), b]:Ln:=[op(Ln), n]: endif: enddo:
MATHEMATICA
LinearRecurrence[{575, -575, 1}, {0, 48, 27600}, 30] (* G. C. Greubel, Jun 26 2022 *)
PROG
(PARI) concat(0, Vec(-48*x^2/((x-1)*(x^2-574*x+1)) + O(x^30))) \\ Colin Barker, Sep 25 2015
(PARI) a(n) = round((-24+(12+sqrt(143))*(287+24*sqrt(143))^(-n)-(-12+sqrt(143))*(287+24*sqrt(143))^n)/286) \\ Colin Barker, Jul 26 2016
(Magma) I:=[0, 48, 27600]; [n le 3 select I[n] else 575*Self(n-1) -575*Self(n-2) +Self(n-3): n in [1..31]]; // G. C. Greubel, Jun 26 2022
(SageMath) [(12/143)*(chebyshev_U(n, 287) -573*chebyshev_U(n-1, 287) -1) for n in (1..30)] # G. C. Greubel, Jun 26 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Weisenhorn, Apr 19 2009
STATUS
approved