OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..120
FORMULA
a(n) = [ x^(4*n+2) ] ( tanh(x)*tan(x)/2 ).
a(n) = A024342(n)/2.
a(n) ~ (4*n+2)! * 2^(4*n+4) * tanh(Pi/2) / Pi^(4*n+3). - Vaclav Kotesovec, Jan 24 2015
MATHEMATICA
nn=20; Table[(CoefficientList[Series[(Tan[x]*Tanh[x])/2, {x, 0, 4*nn+2}], x] * Range[0, 4*nn+2]!)[[n]], {n, 3, 4*nn+1, 4}] (* Vaclav Kotesovec, Jan 24 2015 *)
PROG
(Magma)
m:=50; R<x>:=PowerSeriesRing(Rationals(), m);
b:= Coefficients(R!(Laplace( Tan(x)*Tanh(x)/2 )));
[b[4*n-3]: n in [1..Floor((m-2)/4)]]; // G. C. Greubel, Jan 31 2022
(Sage) [factorial(4*n+2)*( tan(x)*tanh(x)/2 ).series(x, 4*n+3).list()[4*n+2] for n in (0..20)] # G. C. Greubel, Jan 31 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended and signs tested Mar 1997.
STATUS
approved