login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160013
Numerator of Hermite(n, 9/25).
1
1, 18, -926, -61668, 2362476, 350864568, -8449912776, -2783582689968, 23832248370576, 28264807370350368, 240653738497326624, -348978324836427720768, -9590598751393940053824, 5062044095021324890551168, 246964023420535373904561024, -84140419241303548854363341568
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Jul 17 2018: (Start)
a(n) = 25^n * Hermite(n, 9/25).
E.g.f.: exp(18*x - 625*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(18/25)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 18/25, -926/625, -61668/15625, 2362476/390625
MAPLE
seq(coeff(series(factorial(n)*exp(18*x-625*x^2), x, n+1), x, n), n=0..15); # Muniru A Asiru, Jul 17 2018
MATHEMATICA
Numerator[HermiteH[Range[0, 20], 9/25]] (* Harvey P. Dale, Oct 10 2012 *)
Table[25^n*HermiteH[n, 9/25], {n, 0, 30}] (* G. C. Greubel, Jul 17 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 9/25)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(18*x - 625*x^2))) \\ G. C. Greubel, Jul 17 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(18/25)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 17 2018
(GAP) List(List([0..15], n->Sum([0..Int(n/2)], k->(-1)^k*Factorial(n)*(18/25)^(n-2*k)/(Factorial(k)*Factorial(n-2*k)))), NumeratorRat); # Muniru A Asiru, Jul 17 2018
CROSSREFS
Cf. A009969 (denominators).
Sequence in context: A201538 A214160 A242446 * A356687 A123786 A333089
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved