login
A087440
Expansion of (1-2x-3x^2)/((1-2x)(1-4x)).
2
1, 4, 13, 46, 172, 664, 2608, 10336, 41152, 164224, 656128, 2622976, 10488832, 41949184, 167784448, 671113216, 2684403712, 10737516544, 42949869568, 171799085056, 687195553792, 2748780642304, 10995119423488, 43980471402496
OFFSET
0,2
COMMENTS
Binomial transform is A087439. Second binomial transform of A084221 (with extra leading 1).
FORMULA
a(n) = 5*4^n/8 + 3*2^n/4 - 3*0^n/8.
a(n) = 6*a(n-1) - 8*a(n-2), n>2. - Harvey P. Dale, Jan 18 2012
a(n) = A000217(2^n) + floor(A000217(2^(n-1))). - J. M. Bergot, May 03 2018
MATHEMATICA
CoefficientList[Series[(1-2x-3x^2)/((1-2x)(1-4x)), {x, 0, 30}], x] (* or *) Join[{1}, LinearRecurrence[{6, -8}, {4, 13}, 30]] (* Harvey P. Dale, Jan 18 2012 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 03 2003
STATUS
approved