login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203835
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with every 2X2 subblock having equal diagonal elements or equal antidiagonal elements
8
45, 225, 225, 1125, 1971, 1125, 5625, 17289, 17289, 5625, 28125, 151659, 270333, 151659, 28125, 140625, 1330353, 4238721, 4238721, 1330353, 140625, 703125, 11669859, 66490965, 119606211, 66490965, 11669859, 703125, 3515625, 102368025
OFFSET
1,1
COMMENTS
Table starts
......45.......225.........1125...........5625.............28125
.....225......1971........17289.........151659...........1330353
....1125.....17289.......270333........4238721..........66490965
....5625....151659......4238721......119606211........3383285769
...28125...1330353.....66490965.....3383285769......173185290765
..140625..11669859...1043088057....95763046491.....8882824128417
..703125.102368025..16363800045..2710984443345...455911325162757
.3515625.897972507.256713156657.76749227497395.23404859123410809
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 9*5^n
k=2: a(n) = 9*a(n-1) -2*a(n-2)
k=3: a(n) = 19*a(n-1) -54*a(n-2) +32*a(n-3)
k=4: a(n) = 31*a(n-1) -24*a(n-2) -1612*a(n-3) +3816*a(n-4) +1152*a(n-5) -2784*a(n-6) +256*a(n-7)
k=5: (order 12 recurrence)
k=6: (order 28 recurrence)
k=7: (order 54 recurrence)
EXAMPLE
Some solutions for n=4 k=3
..0..2..0..1....2..1..0..0....0..1..2..0....0..0..2..0....2..1..0..2
..2..0..1..0....1..1..1..0....1..2..2..2....0..2..2..2....2..2..1..0
..0..2..0..1....2..1..2..1....0..1..2..2....1..0..2..2....1..2..2..1
..2..0..0..0....2..2..2..2....0..0..1..2....2..1..0..2....0..1..2..2
..2..2..0..1....1..2..1..2....2..0..0..1....1..2..1..0....2..0..1..2
CROSSREFS
Column 1 is A189274(n+2)
Sequence in context: A091197 A184539 A146302 * A087442 A334035 A280059
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jan 06 2012
STATUS
approved