login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203836
Smallest sum s of two consecutive primes such that s = 0 mod prime(n).
2
8, 12, 5, 42, 198, 52, 68, 152, 138, 696, 186, 222, 410, 172, 564, 1272, 472, 1220, 268, 852, 1460, 2212, 1494, 712, 1164, 1818, 618, 1284, 872, 2486, 508, 786, 548, 1668, 1192, 906, 3768, 978, 668, 6228, 3222, 6516, 3820, 772, 4728, 3980, 6330, 892, 5448, 1374
OFFSET
1,1
COMMENTS
Besides a(3)=5, all terms are even and >=4. - Zak Seidov, Nov 29 2014
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = 4*prime(n) if prime(n) is in A118134. - Robert Israel, May 25 2020
EXAMPLE
a(1) = 8 = 3 + 5 is the least sum of two consecutive primes that is a multiple of prime(1) = 2.
a(3) = 5 = 2 + 3 is the least sum of two consecutive primes that is a multiple of prime(3) = 5.
MAPLE
N := 100: # for a(1)..a(N)
M := ithprime(N):
V := Vector(M):
count:= 0:
for i from 1 while count < N do
x:= ithprime(i)+ithprime(i+1);
Q:= convert(select(t -> t <= M and V[t]=0, numtheory:-factorset(x)), list);
V[Q]:= x;
count:= count + nops(Q);
od:
seq(V[ithprime(i)], i=1..N); # Robert Israel, May 25 2020
MATHEMATICA
pr=Prime[Range[1000]]; rm=Rest[pr]+Most[pr]; Table[Select[rm, Mod[#, pr[[n]]]==0&][[1]], {n, 50}]
s = Total /@ Partition[Prime@ Range[10^4], 2, 1]; Table[SelectFirst[s, Divisible[#, Prime@ n] &], {n, 52}] (* Michael De Vlieger, Jul 04 2017 *)
PROG
(PARI) a(n)=p = 2; pn = prime(n); forprime(q=3, , if (((s=p+q) % pn) == 0, return (s)); p = q; ); \\ Michel Marcus, Jul 04 2017
(PARI) isA001043(n)=precprime((n-1)/2)+nextprime(n/2)==n&&n>2
a(n, p=prime(n))=if(p==5, return(5)); my(k=2); while(!isA001043(k*p), k+=2); k*p \\ Charles R Greathouse IV, Jul 05 2017
CROSSREFS
Cf. A001043, A062703, A111163, A247245, A247252, A188815 (the smaller prime), A118134.
Sequence in context: A173457 A033198 A072900 * A220665 A166173 A014453
KEYWORD
nonn
AUTHOR
Zak Seidov, Jan 06 2012
STATUS
approved