login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014453
Theta series of quadratic form with Gram matrix [ 2, 0, 0; 0, 2, 1; 0, 1, 2 ].
2
1, 8, 12, 6, 20, 24, 0, 24, 36, 8, 24, 24, 18, 48, 24, 0, 44, 48, 12, 24, 48, 24, 48, 48, 0, 56, 24, 6, 72, 72, 24, 24, 84, 0, 24, 48, 20, 96, 48, 24, 72, 48, 0, 72, 72, 24, 48, 48, 42, 56, 60, 0, 96, 120, 0, 48, 72, 48, 72, 24, 0, 96, 72, 24, 92, 96, 24, 72, 120, 0, 48, 48, 36, 96, 72
OFFSET
0,2
COMMENTS
This is the hexagonal P lattice (the even holotype) of dimension 3.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
a(n) is the number of solutions to x^2 + y^2 + z^2 + x*y = n in integers. - Michael Somos, Jul 03 2018
LINKS
G. Nebe and N. J. A. Sloane, Home page for this lattice
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of a(x) * phi(x) where phi() is a Ramanujan theta function and a() is a cubic AGM theta function. - Michael Somos, May 30 2012
Expansion of (eta(q)^3 + 9 * eta(q^9)^3) * eta(q^2)^5 / (eta(q)^2 * eta(q^3) * eta(q^4)^2) in powers of q.
Convolution of A004016 and A000122. - Michael Somos, May 30 2012
EXAMPLE
G.f. = 1 + 8*x + 12*x^2 + 6*x^3 + 20*x^4 + 24*x^5 + 24*x^7 + 36*x^8 + 8*x^9 + ...
G.f. = 1 + 8*q^2 + 12*q^4 + 6*q^6 + 20*q^8 + 24*q^10 + 24*q^14 + 36*q^16 + 8*q^18 + ...
MATHEMATICA
(* A004016 *) a2[0] = 1; a2[n_] := 6*DivisorSum[n, KroneckerSymbol[#, 3]&]; (* A000122 *) a3[n_] := SeriesCoefficient[EllipticTheta[3, 0, q], {q, 0, n}]; a[n_] := Sum[a2[k]*a3[n-k], {k, 0, n}]; Table[a[n], {n, 0, 75}] (* Jean-François Alcover, Nov 04 2015, from the convolution given by Michael Somos *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] (QPochhammer[ x]^3 + 9 x QPochhammer[ x^9]^3) / QPochhammer[ x^3], {x, 0, n}]; (* Michael Somos, Jul 03 2018 *)
PROG
(PARI) {a(n) = if( n<1, n==0, 2 * qfrep( [ 2, 0, 0; 0, 2, 1; 0, 1, 2 ], n, 1)[n])}; /* Michael Somos, May 30 2012 */
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 + 9 * x * eta(x^9 + A)^3) / eta(x^3 + A) * eta(x^2 + A)^5 / (eta(x + A)^2 * eta(x^4 + A)^2), n))}; /* Michael Somos, May 30 2012 */
CROSSREFS
Sequence in context: A203836 A220665 A166173 * A160862 A152077 A215696
KEYWORD
nonn
AUTHOR
STATUS
approved