OFFSET
0,2
COMMENTS
This is the hexagonal P lattice (the even holotype) of dimension 3.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
a(n) is the number of solutions to x^2 + y^2 + z^2 + x*y = n in integers. - Michael Somos, Jul 03 2018
LINKS
John Cannon, Table of n, a(n) for n = 0..5000
G. Nebe and N. J. A. Sloane, Home page for this lattice
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of a(x) * phi(x) where phi() is a Ramanujan theta function and a() is a cubic AGM theta function. - Michael Somos, May 30 2012
Expansion of (eta(q)^3 + 9 * eta(q^9)^3) * eta(q^2)^5 / (eta(q)^2 * eta(q^3) * eta(q^4)^2) in powers of q.
EXAMPLE
G.f. = 1 + 8*x + 12*x^2 + 6*x^3 + 20*x^4 + 24*x^5 + 24*x^7 + 36*x^8 + 8*x^9 + ...
G.f. = 1 + 8*q^2 + 12*q^4 + 6*q^6 + 20*q^8 + 24*q^10 + 24*q^14 + 36*q^16 + 8*q^18 + ...
MATHEMATICA
(* A004016 *) a2[0] = 1; a2[n_] := 6*DivisorSum[n, KroneckerSymbol[#, 3]&]; (* A000122 *) a3[n_] := SeriesCoefficient[EllipticTheta[3, 0, q], {q, 0, n}]; a[n_] := Sum[a2[k]*a3[n-k], {k, 0, n}]; Table[a[n], {n, 0, 75}] (* Jean-François Alcover, Nov 04 2015, from the convolution given by Michael Somos *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] (QPochhammer[ x]^3 + 9 x QPochhammer[ x^9]^3) / QPochhammer[ x^3], {x, 0, n}]; (* Michael Somos, Jul 03 2018 *)
PROG
(PARI) {a(n) = if( n<1, n==0, 2 * qfrep( [ 2, 0, 0; 0, 2, 1; 0, 1, 2 ], n, 1)[n])}; /* Michael Somos, May 30 2012 */
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 + 9 * x * eta(x^9 + A)^3) / eta(x^3 + A) * eta(x^2 + A)^5 / (eta(x + A)^2 * eta(x^4 + A)^2), n))}; /* Michael Somos, May 30 2012 */
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved