The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A014453 Theta series of quadratic form with Gram matrix [ 2, 0, 0; 0, 2, 1; 0, 1, 2 ]. 2
 1, 8, 12, 6, 20, 24, 0, 24, 36, 8, 24, 24, 18, 48, 24, 0, 44, 48, 12, 24, 48, 24, 48, 48, 0, 56, 24, 6, 72, 72, 24, 24, 84, 0, 24, 48, 20, 96, 48, 24, 72, 48, 0, 72, 72, 24, 48, 48, 42, 56, 60, 0, 96, 120, 0, 48, 72, 48, 72, 24, 0, 96, 72, 24, 92, 96, 24, 72, 120, 0, 48, 48, 36, 96, 72 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This is the hexagonal P lattice (the even holotype) of dimension 3. Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). a(n) is the number of solutions to x^2 + y^2 + z^2 + x*y = n in integers. - Michael Somos, Jul 03 2018 LINKS John Cannon, Table of n, a(n) for n = 0..5000 G. Nebe and N. J. A. Sloane, Home page for this lattice Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of a(x) * phi(x) where phi() is a Ramanujan theta function and a() is a cubic AGM theta function. - Michael Somos, May 30 2012 Expansion of (eta(q)^3 + 9 * eta(q^9)^3) * eta(q^2)^5 / (eta(q)^2 * eta(q^3) * eta(q^4)^2) in powers of q. Convolution of A004016 and A000122. - Michael Somos, May 30 2012 EXAMPLE G.f. = 1 + 8*x + 12*x^2 + 6*x^3 + 20*x^4 + 24*x^5 + 24*x^7 + 36*x^8 + 8*x^9 + ... G.f. = 1 + 8*q^2 + 12*q^4 + 6*q^6 + 20*q^8 + 24*q^10 + 24*q^14 + 36*q^16 + 8*q^18 + ... MATHEMATICA (* A004016 *) a2[0] = 1; a2[n_] := 6*DivisorSum[n, KroneckerSymbol[#, 3]&]; (* A000122 *) a3[n_] := SeriesCoefficient[EllipticTheta[3, 0, q], {q, 0, n}]; a[n_] := Sum[a2[k]*a3[n-k], {k, 0, n}]; Table[a[n], {n, 0, 75}] (* Jean-François Alcover, Nov 04 2015, from the convolution given by Michael Somos *) a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] (QPochhammer[ x]^3 + 9 x QPochhammer[ x^9]^3) / QPochhammer[ x^3], {x, 0, n}]; (* Michael Somos, Jul 03 2018 *) PROG (PARI) {a(n) = if( n<1, n==0, 2 * qfrep( [ 2, 0, 0; 0, 2, 1; 0, 1, 2 ], n, 1)[n])}; /* Michael Somos, May 30 2012 */ (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 + 9 * x * eta(x^9 + A)^3) / eta(x^3 + A) * eta(x^2 + A)^5 / (eta(x + A)^2 * eta(x^4 + A)^2), n))}; /* Michael Somos, May 30 2012 */ CROSSREFS Cf. A000122, A004016. Sequence in context: A203836 A220665 A166173 * A160862 A152077 A215696 Adjacent sequences: A014450 A014451 A014452 * A014454 A014455 A014456 KEYWORD nonn AUTHOR N. J. A. Sloane. STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 20:26 EDT 2024. Contains 371781 sequences. (Running on oeis4.)