login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220665
Array of coefficients of powers of x^2 for (S(2*n+1,x)/x)^3, with Chebyshev's S polynomials A049310
2
1, -8, 12, -6, 1, 27, -108, 171, -136, 57, -12, 1, -64, 480, -1488, 2488, -2472, 1524, -588, 138, -18, 1, 125, -1500, 7575, -21200, 36690, -41700, 32211, -17184, 6330, -1580, 255, -24, 1, -216, 3780, -28098, 117323, -308688, 546864, -680474, 611019, -402264, 195444, -69894, 18153, -3328, 408, -30, 1
OFFSET
0,2
COMMENTS
The row lengths sequence of this array is 3*n+1 = A016777(n).
For the coefficient array of S(n,x)^3 see A219240. The present array is the odd part of the bisection of that one divided by x^3.
The row polynomials in powers of x^2 are (S(2*n+1,x)/x)^3 = sum(a(n,m)*x^(2*m), m=0..3*n), n >= 0. The o.g.f. for these row polynomials is GS3odd(x,z) = ((z+1)^2 +2*z*(x^2-3))/ (((z+1)^2-z*x^2)*((z+1)^2-z*x^2*(x^2-3)^2)). This is obtained from the odd part of the bisection of the o.g.f. for A219240.
FORMULA
a(n,m) = [x^m](S(2*n+1,x)/x)^3, n>=0, 0 <= m <= 3*n.
a(n,m) = [x^m]([z^n]GS3odd(x,z)) with GS3odd(x,z) the o.g.f. for the row polynomials in powers of x^2, given in a comment above.
EXAMPLE
The array a(n,m) begins:
n\m 0 1 2 3 4 5 6 7 8 9
0: 1
1: -8 12 -6 1
2: 27 -108 171 -136 57 -12 1
3: -64 480 -1488 2488 -2472 1524 -588 138 -18 1
...
Row n=4: [125 -1500, 7575, -21200, 36690, -41700, 32211, -17184, 6330, -1580, 255, -24, 1],
Row n=5: [-216, 3780, -28098, 117323, -308688, 546864, -680474, 611019, -402264, 195444, -69894, 18153, -3328, 408, -30, 1],
Row n=6: [343, -8232, 84378, -489608, 1809129, -4562292, 8219967, -10918992, 10927077, -8356272, 4923132, -2240256, 784840, -209580, 41853, -6048, 597, -36, 1],
Row n=1: (S(3,x)/x)^3 = -8 + 12*x^2 - 6*x^4 + 1*x^6, with Chebyshev's S polynomial.
CROSSREFS
Cf. A219240, A220666 (even part of the bisection).
Sequence in context: A033198 A072900 A203836 * A166173 A014453 A160862
KEYWORD
sign,easy,tabf
AUTHOR
Wolfdieter Lang, Dec 17 2012
STATUS
approved