Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 May 25 2020 09:18:18
%S 8,12,5,42,198,52,68,152,138,696,186,222,410,172,564,1272,472,1220,
%T 268,852,1460,2212,1494,712,1164,1818,618,1284,872,2486,508,786,548,
%U 1668,1192,906,3768,978,668,6228,3222,6516,3820,772,4728,3980,6330,892,5448,1374
%N Smallest sum s of two consecutive primes such that s = 0 mod prime(n).
%C Besides a(3)=5, all terms are even and >=4. - _Zak Seidov_, Nov 29 2014
%H Charles R Greathouse IV, <a href="/A203836/b203836.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = 4*prime(n) if prime(n) is in A118134. - _Robert Israel_, May 25 2020
%e a(1) = 8 = 3 + 5 is the least sum of two consecutive primes that is a multiple of prime(1) = 2.
%e a(3) = 5 = 2 + 3 is the least sum of two consecutive primes that is a multiple of prime(3) = 5.
%p N := 100: # for a(1)..a(N)
%p M := ithprime(N):
%p V := Vector(M):
%p count:= 0:
%p for i from 1 while count < N do
%p x:= ithprime(i)+ithprime(i+1);
%p Q:= convert(select(t -> t <= M and V[t]=0, numtheory:-factorset(x)), list);
%p V[Q]:= x;
%p count:= count + nops(Q);
%p od:
%p seq(V[ithprime(i)], i=1..N); # _Robert Israel_, May 25 2020
%t pr=Prime[Range[1000]];rm=Rest[pr]+Most[pr];Table[Select[rm,Mod[#,pr[[n]]]==0&][[1]],{n,50}]
%t s = Total /@ Partition[Prime@ Range[10^4], 2, 1]; Table[SelectFirst[s, Divisible[#, Prime@ n] &], {n, 52}] (* _Michael De Vlieger_, Jul 04 2017 *)
%o (PARI) a(n)=p = 2; pn = prime(n); forprime(q=3, , if (((s=p+q) % pn) == 0, return (s)); p = q;); \\ _Michel Marcus_, Jul 04 2017
%o (PARI) isA001043(n)=precprime((n-1)/2)+nextprime(n/2)==n&&n>2
%o a(n,p=prime(n))=if(p==5, return(5)); my(k=2); while(!isA001043(k*p), k+=2); k*p \\ _Charles R Greathouse IV_, Jul 05 2017
%Y Cf. A001043, A062703, A111163, A247245, A247252, A188815 (the smaller prime), A118134.
%K nonn
%O 1,1
%A _Zak Seidov_, Jan 06 2012