login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A185726
Array associated with squares, by antidiagonals.
3
1, 3, 4, 8, 10, 10, 18, 22, 24, 21, 35, 44, 45, 48, 39, 61, 80, 81, 84, 86, 66, 98, 134, 138, 136, 144, 142, 104, 148, 210, 222, 216, 220, 231, 220, 155, 213, 312, 339, 332, 325, 340, 351, 324, 221, 295, 444, 495, 492, 475, 480, 504, 510, 458, 304, 396, 610, 696, 704, 680, 666, 690, 720, 714, 626, 406, 518, 814, 948, 976, 950, 918, 924, 965, 996, 969, 832, 529, 663, 1060, 1257, 1316, 1295, 1248, 1225, 1260, 1315, 1340, 1281, 1080, 675, 833, 1352, 1629, 1732, 1725
OFFSET
1,2
COMMENTS
Every positive integer occurs exactly once; hence, as a sequence, A185725 is a permutation of the positive integers. The square with corners T(0,0)=1 and T(n,n)=n^2 is occupied by the numbers 1,2,...,n^2.
T(n,1)=n^2 (A000290)
T(n,n)=(n-1)^2+1 (A002522)
T(1,k)=k^2-1 (A132411).
FORMULA
T(n,k)=n^2-2k+2 if n>=k; T(n,k)=k^2-2n+1 if n<k.
EXAMPLE
Northwest corner:
1...3...8...15...24
4...2...6...13...22
9...7...5...11...20
16..14..12..10...18
MATHEMATICA
f[n_, k_]:=n^2-2*k+2/; n>=k;
f[n_, k_]:=k^2-2*n+1/; n<k;
TableForm[Table[f[n, k], {n, 1, 10}, {k, 1, 15}]]
Table[f[n-k+1, k], {n, 14}, {k, n, 1, -1}]//Flatten
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 01 2011
STATUS
approved