%I #16 Jul 11 2012 21:11:03
%S 3,5,8,11,14,16,17,19,20,22,25,28,31,33,34,36,39,41,42,44,45,46,47,48,
%T 49,50,51,52,53,55,56,57,58,59,60,61,62,63,64,66,67,69,70,72,73,74,75,
%U 76,77,78,79,80,81,83,84,86,87,88,89,90,91,92,93,94,95,97
%N Numbers that are the sum of distinct primes with prime subscripts.
%C Dressler and Parker proved that every integer > 96 is a sum of distinct terms of A006450 (primes with prime subscripts).
%C The complement is A213356.
%D R. E. Dressler and S. T. Parker, Primes with a prime subscript, J. ACM, 22 (1975), 380-381.
%e Prime(Prime(1)) + Prime(Prime(2)) + Prime(Prime(3)) = Prime(2) + Prime(3) + Prime(5) = 3 + 5 + 11 = 19 is a member.
%Y Cf. A006450, A185724, A213356, A214296.
%K nonn
%O 1,1
%A _Jonathan Sondow_, Jul 10 2012