login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015585
a(n) = 9*a(n-1) + 10*a(n-2).
10
0, 1, 9, 91, 909, 9091, 90909, 909091, 9090909, 90909091, 909090909, 9090909091, 90909090909, 909090909091, 9090909090909, 90909090909091, 909090909090909, 9090909090909091, 90909090909090909, 909090909090909091, 9090909090909090909, 90909090909090909091
OFFSET
0,3
COMMENTS
Number of walks of length n between any two distinct nodes of the complete graph K_11. Example: a(2)=9 because the walks of length 2 between the nodes A and B of the complete graph ABCDEFGHIJK are: ACB, ADB, AEB, AFB, AGB, AHB, AIB, AJB and AKB. - Emeric Deutsch, Apr 01 2004
Beginning with n=1 and a(1)=1, these are the positive integers whose balanced base-10 representations (A097150) are the first n digits of 1,-1,1,-1,.... Also, a(n) = (-1)^(n-1)*A014992(n) = |A014992(n)| for n >= 1. - Rick L. Shepherd, Jul 30 2004
LINKS
Jean-Paul Allouche, Jeffrey Shallit, Zhixiong Wen, Wen Wu, Jiemeng Zhang, Sum-free sets generated by the period-k-folding sequences and some Sturmian sequences, arXiv:1911.01687 [math.CO], 2019.
FORMULA
a(n) = 9*a(n-1) + 10*a(n-2).
From Emeric Deutsch, Apr 01 2004: (Start)
a(n) = 10^(n-1) - a(n-1).
G.f.: x/(1 - 9x - 10x^2). (End)
From Henry Bottomley, Sep 17 2004: (Start)
a(n) = round(10^n/11).
a(n) = (10^n - (-1)^n)/11.
a(n) = A098611(n)/11 = 9*A094028(n+1)/A098610(n). (End)
E.g.f.: exp(-x)*(exp(11*x) - 1)/11. - Elmo R. Oliveira, Aug 17 2024
MATHEMATICA
k=0; lst={k}; Do[k=10^n-k; AppendTo[lst, k], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
LinearRecurrence[{9, 10}, {0, 1}, 30] (* Harvey P. Dale, Aug 08 2014 *)
PROG
(Sage) [lucas_number1(n, 9, -10) for n in range(0, 19)] # Zerinvary Lajos, Apr 26 2009
(Sage) [abs(gaussian_binomial(n, 1, -10)) for n in range(0, 19)] # Zerinvary Lajos, May 28 2009
(Magma) [Round(10^n/11): n in [0..30]]; // Vincenzo Librandi, Jun 24 2011
(PARI) a(n)=10^n\/11 \\ Charles R Greathouse IV, Jun 24 2011
KEYWORD
nonn,easy
EXTENSIONS
Extended by T. D. Noe, May 23 2011
STATUS
approved