login
A206244
Number of partitions of n into repunits (A002275).
3
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8
OFFSET
0,12
COMMENTS
a(n) = A206245(n) for n <= 120, a(n) < A206245(n) for n > 120.
LINKS
Eric Weisstein's World of Mathematics, Repunit
Wikipedia, Repunit
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^((10^k-1)/9)). - Ilya Gutkovskiy, Jul 26 2017
EXAMPLE
a(12)=2 is the first nontrivial term, from the partitions 12 = 1+1+...+1 = 11+1. - N. J. A. Sloane, Jul 26 2017
MATHEMATICA
With[{nn = 50}, Table[Count[IntegerPartitions@ n, k_ /; ContainsAll[Array[Floor[10^#/9] &, IntegerLength[nn + 1]], Union@ k]], {n, 0, nn}]] (* Michael De Vlieger, Jul 26 2017 *)
PROG
(Haskell)
a206244 = p $ tail a002275_list where
p _ 0 = 1
p rus'@(ru:rus) n = if n < ru then 0 else p rus' (n - ru) + p rus n
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Feb 05 2012
STATUS
approved