login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268099
a(n) = 2^(n mod 2)*5*10^floor(n/2) - 1.
0
4, 9, 49, 99, 499, 999, 4999, 9999, 49999, 99999, 499999, 999999, 4999999, 9999999, 49999999, 99999999, 499999999, 999999999, 4999999999, 9999999999, 49999999999, 99999999999, 499999999999, 999999999999, 4999999999999, 9999999999999, 49999999999999
OFFSET
0,1
COMMENTS
These numbers x also have the property that the Fibonacci sequence starting (1, x, ...) contains the concatenation of 1 and x, but there are other solutions, e.g., x = 14285.
LINKS
R. Israel, in reply to E. Angelini, Fibonacci concatenated, SeqFan list, Jan. 26, 2016
FORMULA
G.f.: (-4/(1 - x) + (2*Sqrt(10))/(1 - Sqrt(10)*x) - 10/(-1 + Sqrt(10)*x) + 10/(1 + Sqrt(10)*x) - (2*Sqrt(10))/(1 + Sqrt(10)*x))/4. - Michael De Vlieger, Jan 26 2016
G.f.: ( 4+5*x ) / ( (x-1)*(10*x^2-1) ). - R. J. Mathar, Mar 12 2017
MATHEMATICA
Table[2^Mod[n, 2]*5*10^Floor[n/2] - 1, {n, 0, 30}] (* or *) LinearRecurrence[{0, 10}, {5, 10}, 30] - 1 (* or *) CoefficientList[Series[(-4/(1 - x) + (2 Sqrt[10])/(1 - Sqrt[10] x) - 10/(-1 + Sqrt[10] x) + 10/(1 + Sqrt[10] x) - (2 Sqrt[10])/(1 + Sqrt[10] x))/4, {x, 0, 30}], x] (* Michael De Vlieger, Jan 26 2016 *)
PROG
(PARI) a(n)=2^bittest(n, 0)*5*10^(n\2)-1
CROSSREFS
Sequence in context: A053961 A055812 A368337 * A061867 A019544 A053059
KEYWORD
nonn,easy,changed
AUTHOR
M. F. Hasler, Jan 26 2016
STATUS
approved