login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028820
Squares with digits in nondecreasing order.
6
0, 1, 4, 9, 16, 25, 36, 49, 144, 169, 225, 256, 289, 1156, 1225, 1369, 1444, 4489, 6889, 11236, 11449, 13456, 13689, 27889, 33489, 111556, 112225, 113569, 134689, 146689, 344569, 444889, 2666689, 2778889, 11115556, 11122225, 11135569
OFFSET
1,3
COMMENTS
Number of terms less than 10^k, beginning with k=0: 1, 4, 8, 13, 19, 25, 32, 34, 42, 43, 50, 53, 61, 62, 71, 72, 82, 83, 94, 95, …, .
Like all squares the ending digits can be 0, 1, 4, 5, 6 or 9. Here is the tally of the list of terms < 10^19: {0, 1}, {1, 1}, {4, 4}, {5, 10}, {6, 13}, {9, 66}. Robert G. Wilson v, Jan 01 2014
LINKS
Robert G. Wilson v and Chai Wah Wu, Table of n, a(n) for n = 1..428 (n = 1..106 from Robert G. Wilson v).
Patrick De Geest, Palindromic Squares
FORMULA
a(n) = A028819(n)^2. - Ray Chandler, Jan 06 2014
MATHEMATICA
Select[Range[0, 4000]^2, Min[Differences[IntegerDigits[#]]]>-1&] (* Harvey P. Dale, Dec 31 2013 *)
Select[Range[0, 10^4]^2, LessEqual@@IntegerDigits[#]&] (* Ray Chandler, Jan 06 2014 *)
PROG
(PARI) mono(n)=n=eval(Vec(Str(n))); for(i=2, #n, if(n[i]<n[i-1], return(0))); 1
for(n=1, 800, if(mono(n^2), print1(n^2", "))) \\ Charles R Greathouse IV, Aug 22 2011
(Python)
from itertools import combinations_with_replacement
from gmpy2 import is_square
A028820_list = [0] + [n for n in (int(''.join(i)) for l in range(1, 11) for i in combinations_with_replacement('123456789', l)) if is_square(n)] # Chai Wah Wu, Dec 07 2015
CROSSREFS
Intersection of A000290 and A009994.
Sequence in context: A122541 A133743 A235484 * A122683 A235597 A309002
KEYWORD
nonn,base
EXTENSIONS
Definition edited by Zak Seidov, Dec 31 2013
STATUS
approved