login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028822
Squares with digits in nonincreasing order.
6
0, 1, 4, 9, 64, 81, 100, 400, 441, 841, 900, 961, 6400, 7744, 8100, 10000, 40000, 44100, 84100, 90000, 96100, 640000, 774400, 810000, 1000000, 4000000, 4410000, 8410000, 8874441, 9000000, 9610000, 9853321, 64000000, 77440000
OFFSET
1,3
COMMENTS
From Robert G. Wilson v, Jan 02 2014: (Start)
If x is present so is 100x. The primitives are 0, 1, 4, 9, 64, 81, 441, 841, 961, 7744, 8874441, 9853321, 999887641, …, . = A062826. Their square roots are: 0, 1, 2, 3, 8, 9, 21, 29, 31, 88, 2979, 3139, 31621, …, . Are there no more primitives?
Number of terms less than 10^k, beginning with k=0: 1, 4, 6, 12, 15, 21, 24, 32, 35, 44, 47, 56, 59, 68, 71, 80, 83, 92, 95, …, .
Like all squares the ending digits can be 0, 1, 4, 5, 6 or 9. Here is the tally of the list of terms < 10^18: {0, 84}, {1, 8}, {4, 3}, {5, 0}, {6, 0}, {9, 1}. (End)
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..96
P. De Geest, Palindromic Squares
FORMULA
For n > 1, a(n) = A062826(i) * 10^j for some i and j. - Charles R Greathouse IV, Jan 02 2014
a(n) = A028821(n)^2. - Ray Chandler, Jan 05 2014
MATHEMATICA
fQ[n_] := Max[ Differences[ IntegerDigits[ n]]] < 1; Select[ Range[0, 9000]^2, fQ] (* Robert G. Wilson v, Jan 02 2014 *)
Select[Range[0, 10^4]^2, GreaterEqual@@IntegerDigits[#]&] (* Ray Chandler, Jan 05 2014 *)
PROG
(PARI) isA009996(n)=n=digits(n); for(i=2, #n, if(n[i]>n[i-1], return(0))); 1
is(n)=issquare(n) && isA009996(n) \\ Charles R Greathouse IV, Jan 02 2014
CROSSREFS
KEYWORD
nonn,base
EXTENSIONS
Better name from Robert G. Wilson v, Jan 02 2014
STATUS
approved