OFFSET
1,3
COMMENTS
From Robert G. Wilson v, Jan 02 2014: (Start)
If x is present so is 100x. The primitives are 0, 1, 4, 9, 64, 81, 441, 841, 961, 7744, 8874441, 9853321, 999887641, …, . = A062826. Their square roots are: 0, 1, 2, 3, 8, 9, 21, 29, 31, 88, 2979, 3139, 31621, …, . Are there no more primitives?
Number of terms less than 10^k, beginning with k=0: 1, 4, 6, 12, 15, 21, 24, 32, 35, 44, 47, 56, 59, 68, 71, 80, 83, 92, 95, …, .
Like all squares the ending digits can be 0, 1, 4, 5, 6 or 9. Here is the tally of the list of terms < 10^18: {0, 84}, {1, 8}, {4, 3}, {5, 0}, {6, 0}, {9, 1}. (End)
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..96
P. De Geest, Palindromic Squares
FORMULA
For n > 1, a(n) = A062826(i) * 10^j for some i and j. - Charles R Greathouse IV, Jan 02 2014
a(n) = A028821(n)^2. - Ray Chandler, Jan 05 2014
MATHEMATICA
fQ[n_] := Max[ Differences[ IntegerDigits[ n]]] < 1; Select[ Range[0, 9000]^2, fQ] (* Robert G. Wilson v, Jan 02 2014 *)
Select[Range[0, 10^4]^2, GreaterEqual@@IntegerDigits[#]&] (* Ray Chandler, Jan 05 2014 *)
PROG
(PARI) isA009996(n)=n=digits(n); for(i=2, #n, if(n[i]>n[i-1], return(0))); 1
is(n)=issquare(n) && isA009996(n) \\ Charles R Greathouse IV, Jan 02 2014
CROSSREFS
KEYWORD
nonn,base
AUTHOR
EXTENSIONS
Better name from Robert G. Wilson v, Jan 02 2014
STATUS
approved